Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 5, 2015
Dynamics of Chemical Reaction Networks
Page(s) 47 - 67
Published online 27 August 2015
  1. D. Angeli, P. De Leenheer, E. Sontag. Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J. Math. Biol., 61 (2010), no. 4, 581–616. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. M. Banaji. Monotonicity in chemical reaction systems. Dyn. Syst., 24 (2009), no. 1, 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Banaji, G. Craciun. Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Adv. Appl. Math., 44 (2010), no. 2, 168–184. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. M. Banaji, J. Mierczyński. Global convergence in systems of differential equations arising from chemical reaction networks. J. Differential Equations, 254 (2013), no. 3, 1359–1374. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Banaji, C. Pantea. Some results on injectivity and multistationarity in chemical reaction networks. preprint,, (2013). [Google Scholar]
  6. C. Conradi, D. Flockerzi, J. Raisch, J. Stelling. Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci. USA, 104 (2007), no. 49, 19175–19180. [CrossRef] [Google Scholar]
  7. C. Conradi, M. Mincheva. Graph-theoretic analysis of multistationarity using degree theory. preprint,, (2014). [Google Scholar]
  8. G. Craciun, M. Feinberg. Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math., 65 (2005), no. 5, 1526–1546. [CrossRef] [Google Scholar]
  9. G. Craciun, M. Feinberg. Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models. IEE Proceedings-Systems Biology, 153 (2006), 179–186. [CrossRef] [Google Scholar]
  10. G. Craciun, M. Feinberg. Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph. SIAM J. Appl. Math., 66 (2006), no. 4, 1321–1338. [CrossRef] [Google Scholar]
  11. G. Craciun, M. Feinberg. Multiple equilibria in complex chemical reaction networks: Semiopen mass action systems. SIAM J. Appl. Math., 70 (2010), no. 6, 1859–1877. [CrossRef] [Google Scholar]
  12. G. Craciun, L. Garcia-Puente, F. Sottile. Some geometrical aspects of control points for toric patches. In M. Dæhlen, M. S. Floater, T. Lyche, J.-L. Merrien, K. Morken, L. L. Schumaker, eds., Mathematical Methods for Curves and Surfaces, vol. 5862 of Lecture Notes in Comput. Sci., pages 111–135. Springer, Heidelberg, 2010. [Google Scholar]
  13. G. Craciun, C. Pantea, E. Sontag. Graph-theoretic characterizations of multistability and monotonicity for biochemical reaction networks, pages 63–72. Springer, 2011. [Google Scholar]
  14. P. Donnell, M. Banaji. Local and global stability of equilibria for a class of chemical reaction networks. SIAM J. Appl. Dyn. Syst., 12 (2013), no. 2, 899–920. [CrossRef] [Google Scholar]
  15. P. Donnell, M. Banaji, A. Marginean, C. Pantea. CoNtRol: an open source framework for the analysis of chemical reaction networks. Bioinformatics, (2014), to appear. [Google Scholar]
  16. P. Ellison. The advanced deficiency algorithm and its applications to mechanism discrimination. Ph.D. thesis, University of Rochester, 1998. [Google Scholar]
  17. P. Ellison, M. Feinberg, H. Ji, D. Knight. Chemical Reaction Network Toolbox, 2011. Available at [Google Scholar]
  18. M. Feinberg. Complex balancing in general kinetic systems. Arch. Rational Mech. Anal., 49 (1972), no. 3, 187–194. [Google Scholar]
  19. M. Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci., 42 (1987), no. 10, 2229–2268. [Google Scholar]
  20. M. Feinberg. Multiple steady states for chemical reaction networks of deficiency one. Arch. Rational Mech. Anal., 132 (1995), no. 4, 371–406. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Feliu. Injectivity, multiple zeros, and multistationarity in reaction networks. preprint,, (2014). [Google Scholar]
  22. E. Feliu, C. Wiuf. Preclusion of switch behavior in reaction networks with mass-action kinetics. Appl. Math. Comput., 219 (2012), 1449–1467. [CrossRef] [Google Scholar]
  23. E. Feliu, C. Wiuf. Simplifying biochemical models with intermediate species. J. R. Soc. Interface, 10 (2013), no. 87. [Google Scholar]
  24. D. Fouchet, R. Regoes. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells. PLoS ONE, 3 (2008), no. 5, e2306. [CrossRef] [PubMed] [Google Scholar]
  25. G. Gnacadja. A Jacobian criterion for the simultaneous injectivity on positive variables of linearly parameterized polynomials maps. Linear Algebra Appl., 437 (2012), 612–622. [CrossRef] [Google Scholar]
  26. P. Grassberger. On phase transitions in Schlögl’s second model. Zeitschrift für Physik B Condensed Matter, 47 (1982), no. 4, 365–374. [Google Scholar]
  27. J. W. Helton, I. Klep, R. Gomez. Determinant expansions of signed matrices and of certain Jacobians. SIAM J. Matrix Anal. Appl., 31 (2009), no. 2, 732–754. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Ivanova. Conditions for uniqueness of stationary state of kinetic systems related to structural scheme of reactions. Kinet. Katal., 20 (1979), 1019–1023. [Google Scholar]
  29. H. Ji. Uniqueness of Equilibria for Complex Chemical Reaction Networks. Ph.D. thesis, Ohio State University, 2011. [Google Scholar]
  30. B. Joshi. Complete characterization by multistationarity of fully open networks with one non-flow reaction. Applied Mathematics and Computation, 219 (2013), 6931–6945. [CrossRef] [Google Scholar]
  31. B. Joshi, A. Shiu. Simplifying the Jacobian criterion for precluding multistationarity in chemical reaction networks. SIAM J. Appl. Math., 72 (2012), no. 3, 857–876. [CrossRef] [Google Scholar]
  32. B. Joshi, A. Shiu. Atoms of multistationarity in chemical reaction networks. Journal of Mathematical Chemistry, 51 (2013), no. 1, 153–178. [Google Scholar]
  33. K. P. Lesch, D. Bengel. Neurotransmitter reuptake mechanisms. CNS drugs, 4 (1995), no. 4, 302–322. [CrossRef] [Google Scholar]
  34. G. Marin, G. S. Yablonsky. Kinetics of Chemical Reactions. Wiley-VCH, Wienheim, Germany, 2011. [Google Scholar]
  35. M. Mincheva, G. Craciun. Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks. Proceedings of the IEEE, 96 (2008), no. 8, 1281–1291. [CrossRef] [Google Scholar]
  36. S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu, A. Dickenstein. Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. to appear in Found. Comput. Math. [Google Scholar]
  37. M. Santillán, M. C. Mackey. Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proceedings of the National Academy of Sciences, 98 (2001), no. 4, 1364–1369. [CrossRef] [Google Scholar]
  38. F. Schlögl. Chemical reaction models for non-equilibrium phase transitions. Zeitschrift für Physik, 253 (1972), no. 2, 147–161. [Google Scholar]
  39. P. M. Schlosser, M. Feinberg. A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions. Chemical Engineering Science, 49 (1994), no. 11, 1749–1767. [CrossRef] [Google Scholar]
  40. G. Shinar, M. Feinberg. Concordant chemical reaction networks. Math. Biosci., 240 (2012), no. 2, 92–113. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. G. Shinar, M. Feinberg. Concordant chemical reaction networks and the species-reaction graph. Math. Biosci., 241 (2013), no. 1, 1–23. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  42. D. Siegal-Gaskins, M. K. Mejia-Guerra, G. D. Smith, E. Grotewold. Emergence of switch-like behavior in a large family of simple biochemical networks. PLoS Comput. Biol., 7 (2011), no. 5, e1002039. [CrossRef] [Google Scholar]
  43. C. Wiuf, E. Feliu. Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species. SIAM J. Appl. Dyn. Syst., 12 (2013), 1685–1721. [CrossRef] [Google Scholar]
  44. G. Yablonskii, V. Bykov, A. Gorban, V. Elokhin. Kinetic Models of Catalytic Reactions. Comprehensive Chemical Kinetics, vol. 32, ed. by R.G. Compton, Elsevier, Amsterdam, 1991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.