Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 5, 2015
Dynamics of Chemical Reaction Networks
Page(s) 68 - 83
Published online 27 August 2015
  1. R. Aris. Chemical reactors and some bifurcation phenomena. Annals of the N.Y. Acad. of Sci., 316 (1979), 314–331. [CrossRef] [Google Scholar]
  2. G. Eigenberger Kinetics instabilities in heterogeneously catalyzed reactions. Chem. Eng. Sci., 33 (1978), No. 9, 1263–1268. [CrossRef] [Google Scholar]
  3. V. Hlavacek, J. Votruba. Hysteresis and periodic activity behavior in catalytic reactors Adv. in Catalysis., 27 (1978), No. 1, 59–96. [Google Scholar]
  4. R. Imbihl, G. Ertl. Oscillatory kinetics in heterogenenous catalysis. Chem. Rev., 95 (1995), No. 3, 697–794. [CrossRef] [Google Scholar]
  5. V. P. Zhdanov. Periodic perturbation of the kinetics of heterogeneous catalytic reactions. Surf. Sci. Rep. 55 (2004), No.1, 1–48. [CrossRef] [Google Scholar]
  6. V. I. Bykov, S.B. Tsybenova. Nonlinear models of chemical kinetics. KRASAND, Moscow, 2011 [in Russian]. [Google Scholar]
  7. V. V. Azatyan. Specific features of nonisothermal chain reactions and new theoretical aspects. Kinet. Catal., 40 (1999), No. 6, 812–834. [Google Scholar]
  8. V. V. Azatyan, Z. S. Andrianova, A. N. Ivanova. The role played by chain avalanches in the developed burning of hydrogen mixtures with oxygen and air at atmospheric pressure. Russ. J. Phys. Chem., 80 (2006), No. 7, 1044–1049. [CrossRef] [Google Scholar]
  9. V. I. Bykov. About simple models of oscillating catalytic reactions. Russ. J. Phys. Chem., 54 (1985), No. 11, 2712–2716. [Google Scholar]
  10. M. M. Slinko, N. I. Jaeger. Oscillating heterogeneous catalytic systems. Elsevier, Amsterdam, 1994. [Google Scholar]
  11. V. I. Bykov. Modeling of chemical reactions in chemical kinetics. KomKniga, Moscow, 2006. [in Russian]. [Google Scholar]
  12. G. S. Yablonski, V. I. Bykov, A. N. Gorban, V. I. Elokhin. Kinetic models of catalytic reactions. Elsevier, Amsterdam, 1991. [Google Scholar]
  13. G. S. Yablonskii, V. I. Bykov, A. N. Gorban’. Kinetic models of catalytic reactions. Nauka, Novosibirsk, 1983. [in Russian]. [Google Scholar]
  14. G. S. Yablonskii, V. I. Bykov, V. I. Elokhin. Kinetics of model heterogeneous catalysis reactions. Nauka, Novosibirsk, 1984. [in Russian]. [Google Scholar]
  15. V. I. Bykov, T. P. Pushkareva. Parametric analysis of kinetic models. 5. PT-diagram for the simplest autocatalytic oscillator. React. Kinet. Catal. Lett., 52 (1994), No. 1, 87–93. [CrossRef] [Google Scholar]
  16. V. I. Bykov, T. P. Pushkareva. Parametric analysis of kinetic models. 7. Thermokinetic oscillator with autocatalysis. React. Kinet. Catal. Lett, 54 (1995), No. 1, 145–158. [CrossRef] [Google Scholar]
  17. V. I. Bykov, S. B. Tsybenova. Semenov diagram as a steady-state stability criterion. Dokl. Phys. Chem. 374 (2000), No. 5, 196–199. [Google Scholar]
  18. V. I. Bykov, S. B. Tsybenova, M. G. Slin’ko. Andronov–Hopf bifurcations in the Aris–Amundson model. Dokl. Phys. Chem., 378 (2001), No. 1–3, 134–137. [CrossRef] [Google Scholar]
  19. V. I. Bykov, S. B. Tsybenova, M. G. Slin’ko. Imperfectly stirred continuous reactor dynamics. Dokl. Chem. 378 (2001), No. 4–6, 298–301. [CrossRef] [Google Scholar]
  20. G. A. Chumakov, M. G. Slin’ko, V. D. Belyaev. Complex changes in the rate of a heterogeneous catalytic reaction. Dokl. Akad. Nauk SSSR. 253 (1980), No. 3, 653–658. [Google Scholar]
  21. G. A. Chumakov, M. G. Slin’ko. Kinetic turbulence (chaos) of the hydrogen-oxygen interaction rate on metal-catalysts. Dokl. Akad. Nauk SSSR. 266 (1982), No. 5, 1194–1198. [Google Scholar]
  22. G. A. Chumakov, N. A. Chumakova. Relaxation oscillations in catalytic hydrogen oxidation including a chase on french ducks. XV Int. Conf. on Chem. Reactors CHEMREACTOR-15. Boreskov Inst. of Catalysis, Novosibirsk, 2001, 75–78. [Google Scholar]
  23. V. I. Bykov, S. B. Tsybenova. A model of thermokinetic oscillations on the surface of a catalyst. Russ. J. Phys. Chem., 77 (2003), No. 9, 1402–1405. [Google Scholar]
  24. V. I. Bykov, S. B. Tsybenova. Parametric analysis of the models of a stirred tank reactor and a tube reactor. Combustion, Explosion and Shock Waves, 37 (2001), No. 6, 634–640. [CrossRef] [Google Scholar]
  25. V. I. Bykov, S. B. Tsybenova. Parametric analysis of the continuous stirred tank reactor model. Theor. Found. Chem. Eng., 37 (2003), No. 1, 59–69. [CrossRef] [Google Scholar]
  26. M. Kholodniok, A. Klič, M. Kubiček, M. Marek. Methods of Analysis of Nonlinear Dynamical Models. Acad., Prague, 1986. [Mir, Moscow, 1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.