Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 6, 2015
Nonlocal reaction-diffusion equations
Page(s) 17 - 29
Published online 02 October 2015
  1. N. Britton. Aggregation and the competitive exclusion principle. J. Theor. Biol. (1989), 136 (1), 57–66. [CrossRef] [PubMed] [Google Scholar]
  2. R. S. Cantrell, C. Cosner. Spatial ecology via reaction-diffusion equations. John Wiley & Sons, 2004. [Google Scholar]
  3. R. Eftimie, G. de Vries, M. Lewis. Weakly nonlinear analysis of a hyperbolic model for animal group formation. J. Math. Biol. (2009), No. 59 (1), 37–74. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. M. Fuentes, V. Kuperman, V. Kenkre. Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. (2003), No. 91 (15), 158–104. [Google Scholar]
  5. M. Fuentes, V. Kuperman, V. Kenkre. Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. J. Phys. Chem. B (2004), No. 108 (29), 10505–10508. [CrossRef] [Google Scholar]
  6. S. Genieys, N. Bessonov, V. Volpert. Mathematical model of evolutionary branching. Math.Comput. Model. (2009), No. 49 (11), 2109–2115. [Google Scholar]
  7. S. Genieys, V. Volpert, P. Auger. Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phen. (2006), No. 1 (01), 63–80. [Google Scholar]
  8. S. A. Gourley. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. (2000), No. 41(3), 272–284. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. E. E. Holmes, M. Lewis, J. Banks, R. Veit. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology (1994), 17–29. [Google Scholar]
  10. J. Yu, M. Lewis. Seasonal influences on population spread and persistence in streams: spreading speeds. Journal of mathematical biology (2012), No. 65.3, 403–439. [Google Scholar]
  11. V. Hutson, S. Martinez, K. Mischaikow, G. Vickers. The evolution of dispersal. J. Math. Biol. (2003), 47 (6), 483–517. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. F. Lutscher, E. Pachepsky, M. Lewis. The effect of dispersal patterns on stream populations. SIAM J. Appl. Math. (2005), No. 65 (4), 1305–1327. [CrossRef] [Google Scholar]
  13. J. D. Murray. Mathematical biology II: spatial models and biomedical applications. Springer, 2003. [Google Scholar]
  14. B. Perthame, S. Genieys. Concentration in the nonlocal fisher equation: the hamilton-jacobi limit. Math. Model. of Nat. Phen. (2007), No. 2 (04), 135–151. [Google Scholar]
  15. B. Segal, V. A. Volpert, A. Bayliss. Pattern formation in a model of competing populations with nonlocal interactions. Physica No. D (2013), 253, 12–22. [Google Scholar]
  16. J. Stuart. On the non-linear mechanism of wave disturbances in stable and unstable parallel flows. part i. J. Fluid Mech. (1960), No. 9, 152–171. [CrossRef] [Google Scholar]
  17. M. Tanzy, V. A. Volpert, A. Bayliss, M. Nehrkorn. Stability and pattern formation for competing populations with asymmetric nonlocal coupling. Math. Biosci. (2013), No. 246 (1), 14–26. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. A. E. Tikhomirova, V. A. Volpert. Nonlinear dynamics of endothelial cells. Appl. Math. Let. (2007), No. 20 (2), 163–169. [CrossRef] [Google Scholar]
  19. C. M. Topaz, A. L. Bertozzi, M. Lewis. A nonlocal continuum model for biological aggregation. B. Math. Biol. (2006), No. 68 (7), 1601–1623. [Google Scholar]
  20. H. Uecker. Amplitude equations an invitation to multi-scale analysis; Lecture given at the International Summer School Modern Computational Science 2010. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.