Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 6, 2015
Nonlocal reaction-diffusion equations
Page(s) 30 - 47
Published online 02 October 2015
  1. N. F. Britton. Aggregation and the competitive exclusion principle, J. Theoret. Biol., 136 (1989), 57-66. [Google Scholar]
  2. N. F. Britton. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM. J. Appl. Math., 50 (1990), 1663-1688. [Google Scholar]
  3. M. A. Fuentes, M. N. Kuperman, V. M. Kenkre. Nonlocal interaction effects on pattern formation in population dynamics, Phys. Rev. Letters, 91 (2003), 158104-1 – 158104-4. [Google Scholar]
  4. M. A. Fuentes, M. N. Kuperman, V. M. Kenkre. Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects, J. Phys. Chem. B, 108 (2004), 10505-10508. [CrossRef] [Google Scholar]
  5. S. Genieys, N. Bessonov, V. Volpert. Mathematical model of evolutionary branching, Mathematical and Computer Modelling, 49 (2009), 2109-2115. [Google Scholar]
  6. S. Genieys, V. Volpert, P. Auger. Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom., 1 (2006), 63-80. [Google Scholar]
  7. S. Genieys, V. Volpert, P. Auger. Adaptive dynamics: Modelling Darwin’s divergence principle, C. R. Biologies, 329 (2006), 876-879. [Google Scholar]
  8. S. S. Gourley, M. A. J. Chaplain, F. A. Davidson. Spatio-temporal pattern Formation in a nonlocal reaction-diffusion equation, Dynamical Systems, 16 (2001), 173-192. [Google Scholar]
  9. S. M. Merchant, W. Nagata. Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theoretical Population Biology, 80 (2011), 289-297. [Google Scholar]
  10. B. Perthame, S. Genieys. Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit, Math. Model. Nat. Phenom., 2 (2007), 135-151. [Google Scholar]
  11. B. L. Segal, V. A. Volpert, A. Bayliss. Pattern formation in a model of competing populations with nonlocal interactions, Physica D, 253 (2013), 12-22. [Google Scholar]
  12. M. C. Tanzy, V. A. Volpert, A. Bayliss, M. E. Nehrkorn. Stability and pattern formation for competing populations with asymmetric nonlocal coupling, Mathematical Biosciences, 246 (2013), 14-26. [Google Scholar]
  13. M. C. Tanzy, V. A. Volpert, A. Bayliss, M. E. Nehrkorn, A Nagumo-type model for competing populations with nonlocal coupling, Mathematical Biosciences, 263 (2015), 70-82. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.