Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 6, 2015
Nonlocal reaction-diffusion equations
Page(s) 48 - 60
DOI https://doi.org/10.1051/mmnp/201510605
Published online 02 October 2015
  1. A. Mogilner, L. Edelstein-Keshet. A non-local model for a swarm. J. Math. Biol., 38 (1999), no. 6, 534–570. [CrossRef] [Google Scholar]
  2. A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros. Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol., 47 (2003), no. 4, 353–389. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. J.D. Murray. Mathematical Biology, Vol. 1 and Vol. 2. Third Edition, Barcelona, Springer, Berlin, 2007. [Google Scholar]
  4. E. Hernandez-Garcia, C. Lopez. Clustering, advection, and pattern formation in a model of population dynamics with neighborhood-dependent rates. Physical Review E, 70 (2004), no. 1, 016216. [CrossRef] [Google Scholar]
  5. M.A. Fuentes, M.N. Kuperman, V.M. Kenkre. Nonlocal Interaction Effects on Pattern Formation in Population Dynamics. Physical Review Letters, 91 (2003), no. 15, 1581041. [Google Scholar]
  6. M.A. Fuentes, M.N. Kuperman, V.M. Kenkre. Analytical Considerations in the Study of Spatial Patterns Arising from Nonlocal Interaction Effects. The Journal of Physical Chemistry B, 108 (2004), no. 29, 10505–10508. [Google Scholar]
  7. E. Ben-Jacob, I. Cohen, H. Levine. Cooperative self-organization of microorganisms. Advances in Physics, 49 (2000), no. 4, 395–554. [CrossRef] [Google Scholar]
  8. M.G. Clerc, D. Escaff, V.M. Kenkre. Pattern and localized structures in population dynamics. Physical Review E, 72 (2005), no. 5, 056217. [CrossRef] [Google Scholar]
  9. I. Demin, V. Volpert. Existence of waves for a nonlocal reaction-diffusion equation. Mathematical Modelling of Natural Phenomena, 5 (2010), no. 5, 80–101. [Google Scholar]
  10. B.L. Segal, V.A. Volpert, A. Bayliss. Pattern formation in a model of competing populations with nonlocal interactions. Physica D: Nonlinear Phenomena, 253 (2013), 12–22. [Google Scholar]
  11. J.K. Hale, J.K. Kocak. Dynamics and Bifurcations. Texts in Applied Mathematics. Springer-Verlag. Corrected Edition, 1996. [Google Scholar]
  12. J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Applied Mathematical Sciences. Springer. 1st ed. 1983. Corr. 6th Edition, 2002. [Google Scholar]
  13. P.C. Bressloff, M.A. Webber. Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 11 (2012), no. 2, 708–740. [CrossRef] [Google Scholar]
  14. C. Kuehn, M.G. Riedler. Large deviations for nonlocal stochastic neural fields. J. Math. Neuroscience, 4 (2014), no. 1, 1–33. [CrossRef] [Google Scholar]
  15. V. Volterra. Variations and fluctuations of the number of individuals in animal species living together. J. Cons. Int. Explor. Mer, 3 (1928), no. 1, 3–51. [CrossRef] [Google Scholar]
  16. R.A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7 (1937), no. 4, 355–369. [Google Scholar]
  17. M.O. Cáceres. Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics. Journal of Statistical Physics, 156 (2014), no. 1, 94–118. [CrossRef] [Google Scholar]
  18. N.G. van Kampen. Stochastic Processes in Physics and Chemistry, 2nd ed. North Holland, Amsterdam, 1992. [Google Scholar]
  19. M.O. Cáceres. Elementos de estadistica de no equilibrio y sus aplicaciones al transporte en medios desordenados. In Spanish, Reverté S.A., Barcelona, 2003. [Google Scholar]
  20. J. Garcia-Ojalvo, J. M. Sancho. Noise in Spatially Extended, Systems. Springer, Berlin, 2010. [Google Scholar]
  21. P. Colet, F. de Pasquale, M.O. Cáceres, M. San Miguel. Theory for relaxation at a subcritical pitchfork bifurcation. Physical Review A, 41 (1990), no. 4, 1901. [CrossRef] [PubMed] [Google Scholar]
  22. M.O. Cáceres. Passage Time Statistics in a Stochastic Verhulst Model. Journal of Statistical Physics, 132 (2008), no. 3, 487–500. [CrossRef] [Google Scholar]
  23. M.O. Caceres, Ch. D. R. Rojas. Exponential distributed time-delay nonlinear models: Monte Carlo simulations. Physica A, 409 (2014), 61–70. [CrossRef] [Google Scholar]
  24. M.A. Fuentes, M.O. Cáceres. First Passage Time on Pattern Formation in a Non-local Fisher Population Dynamics. Central European Journal of Physics, 11 (2013), no. 12, 1623–1628. [Google Scholar]
  25. M.O. Cáceres. Time-delayed coupled logistic capacity model in population dynamics, Physical Review E, 90 (2014), no. 2, 022137. [CrossRef] [Google Scholar]
  26. S. Gonçalves, G. Abramson, M.F.C. Gomes. Oscillations in SIRS model with distributed delays. The European Physical Journal B, 81 (2011), no. 3, 363–371. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.