Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 1 - 19
Published online 21 March 2016
  1. R. Aboulaich, A. B. Abda, M. Kallel. Missing boundary data reconstruction via an approximate optimal control. Inverse Problems and Imaging, 2 (4) (2008), 411–426. [Google Scholar]
  2. S. Andrieux, T.N. Baranger, A.B. Abda. Solving cauchy problems by minimizing an energy-like functional. Inverse problems, 22 (1) (2006), 115–133. [CrossRef] [Google Scholar]
  3. I. Babuska, R. Tempone, G.E. Zouraris. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Engrg, 194 (2005), 1251–1294. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuska, R. Tempone, G.E. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42 (2) (2005), 800–825. [Google Scholar]
  5. G. Blatman, B. Sudret. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, (2010), 183–197. [Google Scholar]
  6. M. Boulakia, S. Cazeau, M.A. Fernández, J.F. Gerbeau, N. Zemzemi. Mathematical modeling of electrocardiograms: a numerical study. Annals of biomedical engineering, 38 (3) (2010), 1071–1097. [Google Scholar]
  7. P. Chen, A. Quarteroni, G. Rozza. Stochastic optimal robin boundary control problems of advection-dominated elliptic equations. SIAM Journal on Numerical Analysis, 51 (6) (2013), 3163–3185. [CrossRef] [Google Scholar]
  8. O. Doessel, Y. Jiang, W.H. Schulze. Localization of the origin of premature beats using anintegral method. International Journal of Bioelectromagnetism, 13 (2011), 178–183. [Google Scholar]
  9. F.A. Duck. Physical Properties of Tissue: A Comprehensive Reference Book. London, England: Academic, Harcourt Brace Jovanovich, 1990. [Google Scholar]
  10. M. Eiermann, O.G. Ernst, E. Ullmann. Computational aspects of the stochastic finite element method. 10 (1) (2007), 3–15. [Google Scholar]
  11. T.J.C. Faes, D.M.H. Van, D.J.C. Munck, R.M. Heethaar. The electric resistivity of human tissues (100 hz-10 mhz): a meta-analysis of review studies. Physiological measurement, 20 (4) (1999), 1–11. [CrossRef] [PubMed] [Google Scholar]
  12. M.A. Fernández, N. Zemzemi. Decoupled time-marching schemes in computational cardiac electrophysiology and ecg numerical simulation. Mathematical biosciences, 226 (1) (2010), 58–75. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. K.R. Foster, H.P. Schwan. Dielectric properties of tissues and biological materials: a critical review. Critical reviews in biomedical engineering, 17 (1) (1988), 25–104. [Google Scholar]
  14. S. Gabriel, R. Lau, C. Gabriel. The dielectric properties of biological tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Physics in medicine and biology, 41 (11) (1996), 22–51 . [Google Scholar]
  15. S.E. Geneser, R.M. Kirby, R.S. MacLeod. Application of stochastic finite element methods to study the sensitivity of ecg forward modeling to organ conductivity. Biomedical Engineering, IEEE Transactions on, 55 (1) (2008), 31–40. [CrossRef] [Google Scholar]
  16. R. Ghanem, P. Spanos. Stochastic Finite Elements:a Spectral Approach. Springer–Verlag, 1991. [Google Scholar]
  17. S. Ghosh, Y. Rudy. Application of l1-norm regularization to epicardial potential solution of the inverse electrocardiography problem. Annals of Biomedical Engineering, 37 (5) (2009), 902–912. [CrossRef] [PubMed] [Google Scholar]
  18. J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. Yale University Press, New Haven, 1923. [Google Scholar]
  19. P.C. Hansen, D.P. O'Leary. The use of the l-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14 (6) (1993), 1487–1503. [Google Scholar]
  20. L. S Hou, J. Lee, H. Manouzi. Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic pde. Journal of Mathematical Analysis and Applications, 384 (1) (2011), 87–103. [CrossRef] [Google Scholar]
  21. O.P. Le Maître, M.T. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio. A stochastic projection method for fluid flow: Ii. random process. Journal of computational Physics, 181 (1) (2002), 9–44. [CrossRef] [Google Scholar]
  22. V.A. Oosterom, G.J. Huiskamp. The effect of torso inhomogeneities on body surface potentials quantified using "‘tailored"’ geometry. Journal of electrocardiology, 22 (1) (1989), 53–72. [CrossRef] [PubMed] [Google Scholar]
  23. A. Rouatbi. Complétion de données via des méthodes de type controle. Master’s thesis, LAMSIN, E.N.I.T. Tunis, 2009. [Google Scholar]
  24. A.J. Shah, H.S Lim, S. Yamashita, S. Zellerhoff, B. Berte, S. Mahida, D. Hooks, N. Aljefairi, N. Derval, A. Denis, and al. Non invasive ecg mapping to guide catheter ablation. JAFIB: Journal of Atrial Fibrillation, 7(3), 2014. [Google Scholar]
  25. F.M. Weber, D.U. Keller, S. Bauer, G. Seemann, C. Lorenz, O. Dossel. Predicting tissue conductivity influences on body surface potentialsan efficient approach based on principal component analysis. Biomedical Engineering IEEE Transactions, 58 (2) (2011), 256–273. [Google Scholar]
  26. S. Wiener. The homogeneous chaos. Am. J. Math. vol. 60, (1998), 897–936. [Google Scholar]
  27. D. Xiu, G.E. Karniadakis. The wiener–askey polynomial chaos for stochastic differential equations. Journal on Scientific Computing, 24 (2002), 619–644. [Google Scholar]
  28. E.V. Zakharov, A.V. Kalinin. Algorithms and numerical analysis of dc fields in a piecewise-homogeneous medium by the boundary integral equation method. Computational Mathematics and Modeling, 20 (3), (2009), 247–257. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.