Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 20 - 35
Published online 21 March 2016
  1. R. Adami, C. Cacciapuoti, D. Finco, D. Noja. Fast solitons on star graphs. Rev. Math. Phys, 23 (2011), no. 4, 409–451. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Adami, C. Cacciapuoti, D. Finco, D. Noja. On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys. A, 45 (2012), no. 19, 192001. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Adami, C. Cacciapuoti, D. Finco, D. Noja. Stationary states of NLS on star graphs. Europhys. Lett., 100 (2012), no. 1, 10003. [CrossRef] [Google Scholar]
  4. R. Adami, C. Cacciapuoti, D. Finco, D. Noja. Constrained energy minimization and orbital stability for the NLS equation on a star graph. Ann. Inst. Poincaré, An. Non Lin., 31 (2014), no. 6, 1289–1310. [Google Scholar]
  5. R. Adami, C. Cacciapuoti, D. Finco, D. Noja. Variational properties and orbital stability of standing waves for NLS equation on a star graph. J. Diff. Eq., 257 (2014), no. 10, 3738–3777. [CrossRef] [Google Scholar]
  6. R. Adami, D. Noja. Existence of dynamics for a 1d NLS with a generalized point defect. J. Phys. A: Math. Theor., 42 (2009), 495302. [CrossRef] [Google Scholar]
  7. R. Adami, E. Serra, P. Tilli. NLS ground states on graphs. Calc. Var. and PDEs, 54 (2015), no. 1, 743–761. [CrossRef] [Google Scholar]
  8. R. Adami, E. Serra, P. Tilli. Threshold phenomena and existence results for NLS ground states on graphs. Preprint arXiv:1505.03714 (2015), to appear on J. Func. An. [Google Scholar]
  9. F. Ali Mehmeti. Nonlinear waves in networks. Akademie Verlag, Berlin, 1994. [Google Scholar]
  10. B. Bellazzini, M. Mintchev. Quantum fields on star graphs. J. Phys. A: Math. Gen. 39 (2006), 11101. [CrossRef] [Google Scholar]
  11. J. von Below. An existence result for semilinear parabolic network equations with dynamical node conditions. In Pitman Research Notes in Mathematical Series 266, Longman, Harlow Essex, 1992, 274–283. [Google Scholar]
  12. G. Berkolaiko, P. Kuchment. Introduction to quantum graphs. Mathematical Surveys and Monographs, 186. AMS, Providence, RI, 2013. [Google Scholar]
  13. J. Blank, P. Exner, M. Havlicek. Hilbert space operators in Quantum Physics, Springer, New York, 2008. [Google Scholar]
  14. E. Bulgakov, A. Sadreev. Symmetry-breaking in T-shaped photonic waveguides coupled with two identical nonlinear cavities. Phys. Rev. B, 84 (2011), 155304. [CrossRef] [Google Scholar]
  15. C. Cacciapuoti, D. Finco, D. Noja. Topology induced bifurcations for the NLS on the tadpole graph. Phys. Rev. E, 91 (2015), no. 1, 013206. [CrossRef] [MathSciNet] [Google Scholar]
  16. V. Caudrelier. On the Inverse Scattering Method for Integrable PDEs on a Star Graph. Commun. Math. Phys., 338 (2015), no. 2, 893–917. [CrossRef] [Google Scholar]
  17. L. Friedlander. Extremal properties of eigenvalues for a metric graph . Ann. Inst. Fourier, 55 (2005), no. 1, 199–211. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Gnutzman, U. Smilansky, S. Derevyanko. Stationary scattering from a nonlinear network. Phys. Rev. A, 83 (2001), 033831. [CrossRef] [Google Scholar]
  19. P.G. Kevrekidis, D.J. Frantzeskakis, G. Theocharis, I.G. Kevrekidis. Guidance of matter waves through Y-junctions. Phys. Lett. A, 317 (2003), 513–522. [CrossRef] [Google Scholar]
  20. P. Kuchment. Quantum graphs I. Some basic structures. Waves in Random Media, 14 (2004), no. 1, S107–S128. [CrossRef] [Google Scholar]
  21. E.H. Lieb, M. Loss, Analysis: Second edition. American Mathematical Society, 2001. [Google Scholar]
  22. J.L. Marzuola, D.E. Pelinovsky. Ground state on the dumbbell graph. Preprint arXiv:1509.04721 (2015). [Google Scholar]
  23. Z. Sobirov, D. Matrasulov, K. Sabirov, S. Sawada, K. Nakamura. Integrable nonlinear Schrödinger equation on simple networks: connecion formula at vertices, Phys. Rev. E, 81 (2010), no. 6, 066602. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Noja. Nonlinear Schrödinger equation on graphs: recent results and open problems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci,. 372 (2014), no. 2007, 20130002. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. Noja, D. Pelinovsky, G. Shaikhova. Bifurcation and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph. Nonlinearity, 28, (2015) 2343-2378 [CrossRef] [Google Scholar]
  26. L. Tentarelli. NLS ground states on metric graphs with localized nonlinearities. J. Math. An. and Appl., 433 (2016), no. 1, 291–304. [CrossRef] [Google Scholar]
  27. A. Tokuno, M. Oshikawa, E. Demler. Dynamics of the one-dimensional Bose liquids: Andreev-like reflection at Y-junctions and the absence of Aharonov-Bohm effect. Phys. Rev. Lett., 100 (2008), 140402. [CrossRef] [PubMed] [Google Scholar]
  28. H. Uecker, D. Grieser, Z. Sobirov, D. Babajanov, D. Matrasulov. Soliton transport in tubular networks: Transmission at vertices in the shrinking limit. Phys. Rev. E, 91 (2015), no. 2, 023209. [CrossRef] [MathSciNet] [Google Scholar]
  29. E.J.G. Vidal, R.P. Lima, M.L. Lyra. Bose-Einstein condensation in the infinitely ramified star and wheel graphs. Phys. Rev. E, 83 (2011), 061137. [CrossRef] [Google Scholar]
  30. N. Viet Hung, M. Trippenbach, B. Malomed. Symmetric and asymmetric solitons trapped in H-shaped potentials. Phys. Rev. A, 84 (2011), 05361. [Google Scholar]
  31. I. Zapata, F. Sols. Andreev reflection in bosonic condensates. Phys. Rev. Lett., 102 (2009), 180405. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.