Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 36 - 43
Published online 21 March 2016
  1. J.-M. Barbaroux, T. Chen, S. Vugalter, Binding conditions for atomic N-electron systems in non-relativistic QED, Ann. Henri Poincaré Vol. 4, no. 6, (2003), 1101–1136. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Benguria, H. Siedentop, E. Stockmeyer, Dissociation of homonuclear relativistic molecular ions, Ann. Henri Poincaré Vol. 2, no. 1, (2001), 27–40. [CrossRef] [MathSciNet] [Google Scholar]
  3. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987). [Google Scholar]
  4. M. Griesemer, E.H. Lieb, M. Loss, Ground states in non-relativistic quantum electrodynamics, Invent. Math. Vol. 145 (2001), 557-595. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.S. Ismagilov, Conditions for the semiboundedness and discreteness of the spectrum in the case of one-dimensional differential operators, Dokl. Akad. Nauk SSSR Vol. 140 (1961), 33–36. [Google Scholar]
  6. R. Lewis, H. Siedentop, S. Vugalter, The essential spectrum of relativistic multi-particle operators, Ann. Inst. H. Poincaré Phys. Théor. Vol. 67, no. 1, (1997), 1–28. [MathSciNet] [Google Scholar]
  7. E. H. Lieb, H.-T. Yau, The stability and instability of relativistic matter, Comm. Math. Phys. Vol. 118 (1988), 177–213. [CrossRef] [MathSciNet] [Google Scholar]
  8. E.H. Lieb, I.M. Sigal, B. Simon, W. Thirring, Approximate neutrality of large Z-ions, Comm. Math. Phys. Vol. 116, (1988), 635–644. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.D. Morgan, Schrödinger operators whose potentials have separated singularities, J. Operator Theory Vol. 1, (1979), 109–115. [MathSciNet] [Google Scholar]
  10. J.D. Morgan, B. Simon, On the asymptotics of Born-Oppenheimer curves for large nuclear separation Int. J. Quantum Chem. Vol. 17, (1980), 1143–1166. [CrossRef] [Google Scholar]
  11. S. Morozov, S. Vugalter, Stability of atoms in the Brown- Ravenhall model, Ann. Henri Poincaré Vol. 7, no. 4, (2006), 661–687. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.B. Ruskai, Improved estimate of the number of bound states of negatively charged bosonic atoms, Ann. Inst. H. Poincaré Phys. Théor. Vol. 61, no. 2, (1994), 153–162. [MathSciNet] [Google Scholar]
  13. I.M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. Vol. 85, no. 2, (1982), 309–324. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.G. Sigalov, I.M. Sigal, Invariant description, with respect to transpositions of identical particles, of the energy operator spectrum of quantum-mechanical systems, Teor. Mat. Fiz. Vol. 5, no. 1, (1970), 73–93. [CrossRef] [Google Scholar]
  15. J. Uchiyama, Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particule system Publ. RIMS, Kyoto Univ. Vol. 5, (1969), 51–63. [CrossRef] [Google Scholar]
  16. S.A. Vugalter, G.M. Zhislin, The symmetry of Efimov’s effect in systems of three-quantum particles Comm. Math. Phys. Vol. 87, no. 1, (1982/83), 89–103. [CrossRef] [MathSciNet] [Google Scholar]
  17. S.A. Vugalter, G.M. Zhislin, On the finiteness of discrete spectrum in the n-particle problem, Rep. Math. Phys. Vol. 19, no. 1, (1984), 39–90. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.A. Vugalter, G.M. Zhislin, Trudy Moskov. Mat. Obshch. Vol. 49 (1986), 95–112. [MathSciNet] [Google Scholar]
  19. G.M. Zhislin, A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Mat. Obshch. Vol. 9 (1960), 81–120. [Google Scholar]
  20. G.M. Zhislin, Finiteness of the discrete spectrum in the quantum problem of n particles, Teoret. Mat. Fiz. Vol. 21 (1974), 60–73. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.