Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 100 - 110
Published online 21 March 2016
  1. J. Behrndt, P. Exner, V. Lotoreichik: Schrödinger operators with δ-interactions supported on conical surfaces. J. Phys. A: Math. Theor, 47 (2014) 355202. [CrossRef] [Google Scholar]
  2. V. Bonnaillie-Noël, H. Kovařík, K. Pankrashkin (Eds): Mini-workshop: Eigenvalue problems in surface superconductivity. Oberwolfach Rep. (to appear). [Google Scholar]
  3. P. Bryan, J. Louie: Classification of convex ancient solutions to curve shortening flow on the sphere. J. Geom. Anal. (to appear). Preprint arXiv:1408.5523. [Google Scholar]
  4. D. Daners, J. B Kennedy: On the asymptotic behaviour of the eigenvalues of a Robin problem. Differ. Integr. Eq., 237/8 (2010), 659–669. [Google Scholar]
  5. M. Dauge, T. Ourmières-Bonafos, N. Raymond: Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Commun. Pure Appl. Anal., 14 (2015), 1239–1258. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Del Grosso, M. Campanino: A construction of the stochastic process associated to heat diffusion in a polygonal domain. Bolletino Unione Mat. Ital., 13-B (1976) 876–895. [Google Scholar]
  7. P. Exner, A. Minakov: Curvature-induced bound states in Robin waveguides and their asymptotical properties. J. Math. Phys., 55 (2014), 122101. [CrossRef] [Google Scholar]
  8. P. Exner, A. Minakov, L. Parnovski: Asymptotic eigenvalue estimates for a Robin problem with a large parameter. Portugal. Math., 71 2 (2014), 141–156. [CrossRef] [Google Scholar]
  9. P. Exner, M. Tater: Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A: Math. Theor., 43 (2010),474023. [Google Scholar]
  10. T. Giorgi, R. Smits: Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity. Z. Angew. Math. Phys., 58 2, (2007) 224–245. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Helffer, K. Pankrashkin: Tunneling between corners for Robin Laplacians. J. London Math. Soc., 91 (2015), 225–248. [CrossRef] [Google Scholar]
  12. B. Helffer, A. Kachmar: Eigenvalues for the Robin Laplacian in domains with variable curvature. Tran. Amer. Math. Soc. (to appear), preprint arXiv:1411.2700 (2014). [Google Scholar]
  13. P. D. Hislop, I. M. Sigal: Introduction to spectral theory. Springer, 1995. [Google Scholar]
  14. A. A. Lacey, J. R. Ockendon, J. Sabina: Multidimensional reaction diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math., 58 (1998), 1622–1647. [CrossRef] [Google Scholar]
  15. M. Levitin, L. Parnovski: On the principal eigenvalue of a Robin problem with a large parameter. Math. Nachr., 281, (2008) 272–281. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Lou, M. Zhu: A singularly perturbed linear eigenvalue problem in C1 domains. Pacific J. Math., 214 2 (2004), 323–334. [CrossRef] [MathSciNet] [Google Scholar]
  17. K. Pankrashkin: On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains. Nanosystems: Phys. Chem. Math., 4 4 (2013), 474–483. [Google Scholar]
  18. K. Pankrashkin: On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon. Nanosystems: Phys. Chem. Math., 6 (2015), 46–56. [CrossRef] [Google Scholar]
  19. K. Pankrashkin, N. Popoff: Mean curvature bounds and eigenvalues of Robin Laplacians. Calc. Var. PDE. (to appear), preprint arXiv:1407.3087 (2014). [Google Scholar]
  20. K. Pankrashkin, N. Popoff: An effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameter. Preprint arXiv:1502.00877 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.