Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 111 - 132
DOI https://doi.org/10.1051/mmnp/201611209
Published online 21 March 2016
  1. M.J. Ablowitz, R. Haberman. Resonantly coupled nonlinear evolution equations. J. Math. Phys., 16 (1975), 2301–2305. [CrossRef] [Google Scholar]
  2. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur. Method for solving the sine-Gordon equation. Phys. Rev. Lett., 30 (1973), 1262–1264. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur. The inverse scattering transform – Fourier analysis for nonlinear problems. Stud. Appl. Math., 53 (1974), 249–315. [CrossRef] [Google Scholar]
  4. S. Albeverio, R. Hryniv, Ya. Mykytyuk. Reconstruction of radial Dirac and Schrödinger operators from two spectra. J. Math. Anal. Appl., 339 (2008), 45–57. [CrossRef] [Google Scholar]
  5. A.C. Ashton. On the rigorous foundations of the Fokas method for linear elliptic partial differential equations. Proc. R. Soc. A, 468 (2012), no. 2141, 1325–1331. [CrossRef] [Google Scholar]
  6. S. Avdonin, M. Belishev, S. Ivanov. Boundary control and an inverse matrix problem for the equation uttuxx + V(x)u = 0. Math. USSR-Sb., 72 (1992), 287–310. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Avdonin, V. Mikhaylov, K. Ramdani. Reconstructing the potential for the one-dimensional Schrödinger equation from boundary measurements. IMA J. Math. Control Inform., 31 (2014), 137–150. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Avdonin, V. Mikhaylov, A. Rybkin. The boundary control approach to the Titchmarsh-Weyl m-function, I: The response operator and the A-amplitude. Comm. Math. Phys., 275 (2007), 791–803. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Bang. On quasi-analytic functions. In: C. R. Dixieme Congres Math. Scandinaves 1946. Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 249–254. [Google Scholar]
  10. I.V. Barashenkov, D.E. Pelinovsky. Exact vortex solutions of the complex sine-Gordon theory on the plane. Phys. Lett. B, 436 (1998), 117–124. [CrossRef] [Google Scholar]
  11. R. Beals, R.R. Coifman. Scattering and inverse scattering for first order systems. Comm. Pure Appl. Math., 37 (1984), 39–90. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Belishev. Wave bases in multidimensional inverse problems. Math. USSR-Sb. 67 (1990), 23–42. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Belishev. Boundary control method in dynamical inverse problems–an introductory course. In: Dynamical Inverse Problems: Theory and Application. CISM Courses and Lectures, Vol. 529, Springer, Vienna, 2011, pp. 85–150. [Google Scholar]
  14. M. Belishev, V. Mikhailov. Inverse problem for a one-dimensional dynamical Dirac system (BC-method). Inverse Problems, 30 (2014), 125013. [CrossRef] [Google Scholar]
  15. Yu.M. Berezanskii. Integration of non-linear difference equations by means of inverse problem technique. Dokl. Akad. Nauk SSSR, 281 (1985), 16–19. [Google Scholar]
  16. A. Beurling. Mittag–Leffler lectures on complex analysis. In: L. Carleson, P. Malliavin, J. Neuberger, J. Wermer (eds). The Collected Works of Arne Beurling. Vol. 1: Complex Analysis. Contemporary Mathematicians, Birkhäuser, Boston, MA, 1989, pp. 361–444. [Google Scholar]
  17. A.S. Blagoveščenskii. The local method of solution of the nonstationary inverse problem for an inhomogeneous string (Russian). Trudy Mat. Inst. Steklov., 115 (1971), 28–38. [MathSciNet] [Google Scholar]
  18. D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, B. Simon. Witten index, axial anomaly, and Krein’s spectral shift function in supersymmetric quantum mechanics. J. Math. Phys., 28 (1987), 1512–1525 . [CrossRef] [Google Scholar]
  19. J.L. Bona, A.S. Fokas. Initial-boundary-value problems for linear and integrable nonlinear dispersive equations. Nonlinearity, 21 (2008), T195–T203. [CrossRef] [Google Scholar]
  20. P. Bowcock, G. Tzamtzis. Quantum complex sine-Gordon model on a half line. J. High Energy Phys., 11 (2007), 018, 22 pp. [Google Scholar]
  21. R. Brunnhuber, J. Eckhardt, A. Kostenko, G. Teschl. Singular Weyl–Titchmarsh–Kodaira theory for one-dimensional Dirac operators. Monatsh. Math., 174 (2014), 515–547. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Clark, F. Gesztesy. On Self-adjoint and J-self-adjoint Dirac-type Operators: A Case Study. Contemp. Math., 412 (2006), 103–140. [CrossRef] [Google Scholar]
  23. S. Clark, F. Gesztesy, W. Renger. Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators. J. Differential Equations, 219 (2005), 144–182. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl. Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials. J. Spectr. Theory, 4 (2014), 715–768. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Eckhardt, F. Gesztesy, R. Nichols, A. Sakhnovich, G. Teschl. Inverse spectral problems for Schrödinger-type operators with Distributional Matrix-Valued Potentials. Differential Integral Equations, 28 (2015), 505–522. [MathSciNet] [Google Scholar]
  26. L.D. Faddeev, L.A. Takhtajan. Hamiltonian Methods in the Theory of Solitons. Springer, Berlin, 1987. [Google Scholar]
  27. A.S. Fokas. Integrable nonlinear evolution equations on the half-line. Comm. Math. Phys., 230 (2002), 1–39. [CrossRef] [MathSciNet] [Google Scholar]
  28. A.S. Fokas. A Unified Approach to Boundary Value Problems. CBMS-NSF Regional Conference Ser. in Appl. Math. vol. 78. SIAM, Philadelphia, 2008. [Google Scholar]
  29. B. Fritzsche, B. Kirstein, I.Ya. Roitberg, A.L. Sakhnovich. Skew-self-sdjoint Dirac system with a rectangular matrix potential: Weyl theory, direct and inverse problems. Integral Equations Operator Theory, 74 (2012), 163–187. [CrossRef] [MathSciNet] [Google Scholar]
  30. B. Fritzsche, B. Kirstein, I.Ya. Roitberg, A.L. Sakhnovich. Weyl theory and explicit solutions of direct and inverse problems for Dirac system with a rectangular matrix potential. Oper. Matrices, 7 (2013), 183–196. [CrossRef] [MathSciNet] [Google Scholar]
  31. F. Gesztesy, J.A. Goldstein, H. Holden, G. Teschl. Abstract wave equations and associated Dirac-type operators. Ann. Mat. Pura Appl., 191 (2012), 631–676. [CrossRef] [MathSciNet] [Google Scholar]
  32. F. Gesztesy, W. Schweiger, B. Simon. Commutation methods applied to the mKdV-equation. Trans. Amer. Math. Soc., 324 (1991), 465–525. [CrossRef] [MathSciNet] [Google Scholar]
  33. F. Gesztesy, B. Simon. A new approach to inverse spectral theory. II: General real potentials and the connection to the spectral measure. Ann. of Math. (2), 152 (2000), 593–643. [CrossRef] [MathSciNet] [Google Scholar]
  34. G.M.L. Gladwell, A. Morassi (eds). Dynamical Inverse Problems: Theory and Application. CISM Courses and Lectures, vol. 529. Springer, Vienna, 2011. [Google Scholar]
  35. R.O. Hryniv. Analyticity and uniform stability in the inverse spectral problem for Dirac operators. J. Math. Phys., 52 (2011), 063513. [CrossRef] [Google Scholar]
  36. M. Kac, P. van Moerbeke. A complete solution of the periodic Toda problem. Proc. Natl. Acad. Sci. USA, 72 (1975), 2879–2880. [CrossRef] [Google Scholar]
  37. S. Kamvissis, D. Shepelsky, L. Zielinski. Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation. J. Nonlinear Math. Phys., 22 (2015), 448–473. [CrossRef] [MathSciNet] [Google Scholar]
  38. V.G. Khryptun. Expansion of functions of quasi-analytic classes in series in polynomials. Ukrainian Math. J., 41 (1989), 569–584. [CrossRef] [MathSciNet] [Google Scholar]
  39. M.G. Krein. Continuous analogues of propositions on polynomials orthogonal on the unit circle (Russian). Dokl. Akad. Nauk SSSR, 105 (1955), 637–640. [Google Scholar]
  40. I.M. Krichever. The analog of the d’Alembert formula for the main field equation and for the sine-Gordon equation. Dokl. Akad. Nauk. SSSR, 253 (1980), 288–292. [Google Scholar]
  41. B.M. Levitan, I.S. Sargsjan. Introduction to the Spectral Theory. Selfadjoint Differential Operators. Transl. Math. Monographs, vol. 34. AMS, Providence, RI, 1975. [Google Scholar]
  42. A.N. Leznov. M.V. Saveliev. Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems. Progress in Physics, vol 15. Birkhäuser, Basel, 1992. [Google Scholar]
  43. F. Lund, T. Regge. Unified approach to strings and vortices with soliton solutions. Phys. Rev. D (3), 14 (1976), 1524–1535. [CrossRef] [MathSciNet] [Google Scholar]
  44. A. Mercado, A. Osses, L. Rosier. Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Problems, 24 (2008), 015017. [CrossRef] [Google Scholar]
  45. Ya.V. Mykytyuk, D.V. Puyda. Inverse spectral problems for Dirac operators on a finite interval. J. Math. Anal. Appl. 386 (2012), 177–194. [CrossRef] [Google Scholar]
  46. S.P. Novikov. A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl., 8 (1974), 236–246. [CrossRef] [Google Scholar]
  47. K. Pohlmeyer. Integrable Hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys., 46 (1976), 207–221. [Google Scholar]
  48. A.L. Sakhnovich. Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it. Ukr. Math. J., 42 (1990), 316–323. [CrossRef] [Google Scholar]
  49. A.L. Sakhnovich. The N-wave problem on the semiaxis. Russ. Math. Surveys, 46 (1991), 198–200. [CrossRef] [MathSciNet] [Google Scholar]
  50. A.L. Sakhnovich. The Goursat problem for the sine-Gordon equation and the inverse spectral problem. Russ. Math. Iz. VUZ, 36 (1992), 42–52. [Google Scholar]
  51. A.L. Sakhnovich. Dirac type and canonical systems: spectral and Weyl–Titchmarsh functions, direct and inverse problems. Inverse Problems, 18 (2002), 331–348. [CrossRef] [MathSciNet] [Google Scholar]
  52. A.L. Sakhnovich. Second harmonic generation: Goursat problem on the semi-strip, Weyl functions and explicit solutions. Inverse Problems, 21 (2005), 703–716. [CrossRef] [MathSciNet] [Google Scholar]
  53. A.L. Sakhnovich. Weyl functions, inverse problem and special solutions for the system auxiliary to the nonlinear optics equation. Inverse Problems, 24 (2008), 025026, 23 pp. [CrossRef] [MathSciNet] [Google Scholar]
  54. A.L. Sakhnovich. KdV equation in the quarter-plane: evolution of the Weyl functions and unbounded solutions. Math. Model. Nat. Phenom., 7 (2012), 131–145. [CrossRef] [Google Scholar]
  55. A.L. Sakhnovich. On the compatibility condition for linear systems and a factorization formula for wave functions. J. Differential Equations, 252 (2012), 3658–3667. [CrossRef] [MathSciNet] [Google Scholar]
  56. A.L. Sakhnovich. Inverse problem for Dirac systems with locally square-summable potentials and rectangular Weyl functions. J. Spectr. Theory, 5:3 (2015), 547–569. [CrossRef] [MathSciNet] [Google Scholar]
  57. A.L. Sakhnovich. Initial value problems for integrable systems on a semi-strip. SIGMA Symmetry Integrability Geom. Methods Appl., 12 (2016), 001, 17 pp. [Google Scholar]
  58. A.L. Sakhnovich. Nonlinear Schrödinger equation in a semi-strip: evolution of the Weyl–Titchmarsh function and recovery of the initial condition and rectangular matrix solutions from the boundary conditions. J. Math. Anal. Appl., 423 (2015), 746–757. [CrossRef] [Google Scholar]
  59. A.L. Sakhnovich. Dynamical and spectral Dirac systems: response function and inverse problems. J. Math. Phys., 56:11 (2015), 112702, 13 pp. [CrossRef] [Google Scholar]
  60. A.L. Sakhnovich, L.A. Sakhnovich, I.Ya. Roitberg. Inverse Problems and Nonlinear Evolution Equations. Solutions, Darboux Matrices and Weyl–Titchmarsh Functions. De Gruyter, Berlin, 2013. [Google Scholar]
  61. L.A. Sakhnovich. The Non-Linear Equations and the Inverse Problems on the Half-Axis. Preprint 30. Inst. Matem. AN Ukr.SSR, Kiev, 1987. [Google Scholar]
  62. L.A. Sakhnovich. The method of operator identities and problems in analysis. St. Petersburg Math. J., 5 (1994), 1–69. [Google Scholar]
  63. L.A. Sakhnovich. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory Adv. Appl., vol. 107. Birkhäuser, Basel, 1999. [Google Scholar]
  64. V.E. Zakharov, S.V. Manakov. Theory of resonance interaction of wave packages in nonlinear medium. Soviet Physics JETP, 69 (1975), 1654–1673. [Google Scholar]
  65. V.E. Zakharov, A.V. Mikhailov. Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Soviet Physics JETP, 47 (1978), 1017–1027. [Google Scholar]
  66. V.E. Zakharov, A.B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP, 34 (1972), 62–69. [MathSciNet] [Google Scholar]
  67. V.E. Zakharov, A.B. Shabat. Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II. Funct. Anal. Appl., 13 (1979), 166–174. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.