Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 63 - 74
Published online 21 March 2016
  1. A. Aguiar, P. Read, R. Wordsworth, T. Salter, Y. Yamazaki. A laboratory model of Saturn’s North Polar Hexagon. Icarus, 206 (2), (2010), 755-763. [CrossRef] [Google Scholar]
  2. R. Anderson, S. Ali, L. Brandtmiller, S. Nielsen, M. Fleisher, Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, (2009), 1443-1449. [CrossRef] [PubMed] [Google Scholar]
  3. G. Bachelor. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, 1967. [Google Scholar]
  4. J. Beal. Exact solitary water waves with capillary ripples at infinity. Comm. Pure. Appl. Math. 44 (2), (1991), 211-257. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Bell. Hubble captures best view of mars ever obtained From Earth. HubbleSite. NASA., (2001), Retrieved 2010-02-27. [Google Scholar]
  6. G. Ben-Yu. Spectral method for vorticity equations on spherical surface. Math. Comput. 64, (1995), 1067. [CrossRef] [Google Scholar]
  7. E. Blinova. A hydrodynamical theory of pressure and temperature waves and of centers of atmospheric action. C. R. Dokl. Acad. Sci.URSS 39, 257, 1943. [Google Scholar]
  8. E. Blinova. A method of solution of the nonlinear problem of atmospheric motions on a planetary scale. Dokl. Akad. Nauk SSSR N.S.110, 975, 1956 . [Google Scholar]
  9. M. Boehm, S. Lee. The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation. J. Atmos. Sci., 60, (2003), 247–261. [CrossRef] [Google Scholar]
  10. K. Friedrichs, D. Hyers. The existence of solitary waves. Comm. Pure. Appl. Math. 7, 1954. [Google Scholar]
  11. R. Gardner. Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. J. Differential Equations, 44, (1982), 343-364. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Ibragimov, R. Ibragimov. Integration by quadratures of the nonlinear Euler quations modeling atmospheric flows in a thin rotating spherical shell. Phys. Lett. A., 375, (2011), 3858-3865. [CrossRef] [Google Scholar]
  13. R. Ibragimov. Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications. Phys. Fluids, 23, (2011), 123102. [CrossRef] [Google Scholar]
  14. R. Ibragimov, G. Jefferson, J. Carminati. Invariant and approximately invariant solutions of non-linear internal gravity waves forming a column of stratified fluid affected by the Earth’s rotation. Int. J. Non-Linear Mech., 51, (2013), 28-44. [CrossRef] [Google Scholar]
  15. R. Ibragimov, G. Jefferson, J. Carminati. Explicit invariant solutions associated with nonlinear atmospheric fllows in a thin rotating spherical shell with and without west-to-east jets perturbations. Springer: Anal. Math. Phys., 3 (3), (2013), 201-294. [CrossRef] [Google Scholar]
  16. R. Ibragimov, D. Pelinovsky. Incompressible viscous fluid flows in a thin spherical shell. J. Math. Fluid Mech. 11, (2009), 60. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Ibragimov, H. Villasenor. Energy Balance Associated With a Mixing Process at the Interface of a Two-Layer Longitudinal Atmospheric Model. J. Fluids Eng. 136(7),doi:10.1115/1.4026857, 2014. [Google Scholar]
  18. R. Ibragimov, N. Ibragimov, L. Galiakberova. Symmetries and conservation laws of a spectral nonlinear model for atmospheric baroclinic jets. Math. Model. Nat. Phenom. 9 (5), (2014), 32–39. [Google Scholar]
  19. R. Ibragimov, L. Guang. Splitting phenomenon of a higher-order shallow water theory associated with a longitudinal planetary waves. Dyn. Atmos. Oceans Volume 69, (2015), 1-11. [Google Scholar]
  20. R. Ibragimov. On the tidal motion around the Earth complicated by the circular geometry of the ocean’s shape without Coriolis forces. Math. Phys. Anal. Geom. 4, (2001), 51-53. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Iftimie, G. Raugel, G. Some results on the NS equations in thin three-dimensional domains. J. Differ. Equations 169, 281, 2001. [Google Scholar]
  22. T. Levi-Civita, Determination rigoureuse des ondes permanent d’ampleur finie. Math. Ann. 93, (1925), 256-314. [CrossRef] [Google Scholar]
  23. L. Lions, R. Teman, S. Wang. S. On the equations of the large-scale ocea., Nonlinearity 5, 1007, 1992. [Google Scholar]
  24. L. Lions, R. Teman, S. Wang. New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237, 1992. [Google Scholar]
  25. Nekrasov, A.I., 1952: Exact theory of the uniform waves on the surface of hard liquid, USSR Academy of Science, Moscow. [Google Scholar]
  26. H. Okamoto. Nonstationary free boundary problem for perfect fluid with surface tension. J. Math. Soc. Japan 38 (3), 1986. [Google Scholar]
  27. C. Summerhayes, S Thorpe. Oceanography: An Illustrative Guide. Wiley, New York, 1996. [Google Scholar]
  28. W. Weijer, F. Vivier, S. Gille, H. Dijkstra, H. Multiple oscillatory modes of the Argentine Basin. Part II: The spectral origin of basin modes. J. Phys. Oceanogr. 37, 2869, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.