Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 2, 2016
Spectral problems
Page(s) 75 - 88
DOI https://doi.org/10.1051/mmnp/201611206
Published online 21 March 2016
  1. J. L. Lagrange. Mecanique Analytique. vol. 2, 1788. [Google Scholar]
  2. H. Poincare. Methodes Nouvelles de la Mecanique Celeste. Vol. 3, Gauthier-Villars: Paris, 1899. [Google Scholar]
  3. B. van der Pol. A theory of the amplitude of free and forced triode vibrations. Radio Review 1(1920), 701-710, 754-762. [Google Scholar]
  4. P. Fatou. Sur le mouvement d’un systeme soumis ‘a des forces a courte periode. Bulletin de la Société Mathématique de France. 56(1928), 98-139. [MathSciNet] [Google Scholar]
  5. N.M. Krylov, N.N. Bogolyubov. Methodes approchees de la mecanique nonlineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Academie des Sciences d’U-kraine, Kiev(French), 1935. [Google Scholar]
  6. A.C.J. Luo. Continuous Dynamical Systems. HEP/LH Scientific: Beijing/Glen Carbon, 2012. [Google Scholar]
  7. A.C.J. Luo, J.Z. Huang. Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. Journal of Vibration and Control 18(2012), No. 11, 1661-1871. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.C.J. Luo, J.Z. Huang. Analytical dynamics of period-m flows and chaos in nonlinear systems. International Journal of Bifurcation and Chaos, 22(2012), No. 4, Article No. 1250093 (29 pages). [Google Scholar]
  9. A.C.J. Luo, J.Z. Huang. Analytical routines of period-1 motions to chaos in a periodically forced Duffing oscillator with twin-well potential. Journal of Applied Nonlinear Dynamics, 1(2012), No. 1, 73-108. [CrossRef] [Google Scholar]
  10. A.C.J. Luo, J.Z. Huang. Unstable and stable period-m motions in a twin-well potential Duffing oscillator. Discontinuity Nonlinearity and Complexity 1(2012), No. 3, 113-145. [CrossRef] [Google Scholar]
  11. A.C.J. Luo. Analytical solutions of periodic motions in dynamical systems with/without time-delay. International Journal of Dynamics and Control 1(2013), No. 4, 330-359. [CrossRef] [Google Scholar]
  12. A.C.J. Luo, H.X. Jin. Bifurcation trees of period-m motion to chaos in a Time-delayed, quadratic nonlinear oscillator under a periodic excitation. Discontinuity Nonlinearity and Complexity 3(2014), No. 1, 87-107. [CrossRef] [Google Scholar]
  13. A.C.J. Luo, H.X. Jin. Complex period-1 motions of a periodically forced Duffing oscillator with a time-delay feedback. International Journal of Dynamics and Control, 3(2015), No. 4, 325-340. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.C.J. Luo, A.C.J. Jin. Period-m motions to chaos in a periodically forced Duffing oscillator with a time-delay feedback. International Journal of Bifurcation and Chaos 24(2014), No. 10, Article No.1450126 (20 pages). [Google Scholar]
  15. A.C.J. Luo. The mapping dynamics of periodic motions for a three-piecewise linear system under a periodic excitation. Journal of Sound and Vibration 283(2005), No. 3-5, 723-748. [CrossRef] [Google Scholar]
  16. A.C.J, Luo. Regularity and Complexity in Dynamical Systems. Springer: New York, 2012. [Google Scholar]
  17. A.C.J. Luo. Periodic flows in nonlinear dynamical systems based on discrete implicit maps. International Journal of Bifurcation and Chaos, 25(2015), No. 3, Artical No. 1550044 (62 pages). [Google Scholar]
  18. A.C.J. Luo, Y. Guo. A semi-analytical prediction of periodic motions in Duffing oscillator through mapping structures. Discontinuity Nonlinearity and Complexity, 4 (2015), No. 2, 121-150. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.