Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
Page(s) 1 - 17
Published online 21 June 2016
  1. G. Germano, M. Politi, E. Scalas, R.L. Schilling. Stochastic calculus for uncoupled continuous-time random walks. Physical Review E, 79 (2009), 066102. [CrossRef] [Google Scholar]
  2. R. Gorenflo. Stochastic processes related to time-fractional diffusion-wave equation. Communications in Applied and Industrial Mathematics, 6 (2014), e-531. [Google Scholar]
  3. R. Gorenflo, F. Mainardi. Subordination Pathways to Fractional Diffusion. Eur. Phys. J. Special Topics, 193 (2011), 119–132. [CrossRef] [EDP Sciences] [Google Scholar]
  4. R. Gorenflo, J. Loutchko, Yu. Luchko. Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal., 5 (2002), 491–518. [MathSciNet] [Google Scholar]
  5. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin, 2014. [Google Scholar]
  6. A. Hanyga. Multi-dimensional solutions of space-time-fractional diffusion equations. Proc. R. Soc. London. A, 458 (2002), 429–450. [CrossRef] [Google Scholar]
  7. R. Hilfer, L. Anton. Fractional master equations and fractal time random walks. Phys. Rev. E, Rapid Commun., 51 (1995), R848. [CrossRef] [Google Scholar]
  8. K.H. Hoffmann, C. Essex, C. Schulzky. Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn., 23 (1998), 166–175. [CrossRef] [Google Scholar]
  9. M. Kenkre, E.W. Montroll, M.F. Shlesinger. Generalized master equations for continuous-time random walks. Journal of Statistical Physics, 9 (1973), 45–50. [CrossRef] [Google Scholar]
  10. R. Klages, G. Radons, I.M. Sokolov. Anomalous Transport: Foundations and Applications. Wiley-VCH, 2008. [Google Scholar]
  11. X. Li, C. Essex, M. Davison, K.H. Hoffmann, C. Schulzky. Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn., 28 (2003), 279–291. [Google Scholar]
  12. Yu. Luchko. Entropy production rate of a one-dimensional alpha-fractional diffusion process. Axioms, 5 (2016), doi:10.3390/axioms5010006. [CrossRef] [Google Scholar]
  13. Yu. Luchko. Wave-diffusion dualism of the neutral-fractional processes. Journal of Computational Physics, 293 (2015), 40–52. [Google Scholar]
  14. Yu. Luchko. Multi-dimensional fractional wave equation and some properties of its fundamental solution. Communications in Applied and Industrial Mathematics, 6 (2014), e-485. [CrossRef] [Google Scholar]
  15. Yu. Luchko. Fractional wave equation and damped waves. J. Math. Phys., 54 (2013), 031505. [CrossRef] [Google Scholar]
  16. Yu. Luchko. Models of the neutral-fractional anomalous diffusion and their analysis. AIP Conf. Proc., 1493 (2012), 626–632. [CrossRef] [Google Scholar]
  17. Yu. Luchko. Anomalous diffusion models and their analysis. Forum der Berliner mathematischen Gesellschaft, 19 (2011), 53–85. [Google Scholar]
  18. Yu. Luchko, R. Gorenflo. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica, 24 (1999), 207–233. [Google Scholar]
  19. Yu. Luchko, V. Kiryakova. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal., 16 (2013), 405–430. [CrossRef] [Google Scholar]
  20. M. Magdziarz, A. Weron, J. Klafter. Equivalence of the Fractional Fokker-Planck and Subordinated Langevin Equations: The Case of a Time-Dependent Force. Phys. Rev. Lett., 101 (2008), 210601. [CrossRef] [PubMed] [Google Scholar]
  21. F. Mainardi, Yu. Luchko, G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal., 4 (2001), 153–192. [MathSciNet] [Google Scholar]
  22. O.I. Marichev. Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables. Ellis Horwood, 1983. [Google Scholar]
  23. R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16 (2014), 24128–24164. [CrossRef] [PubMed] [Google Scholar]
  24. R. Metzler, J. Klafter. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen., 37 (2004), R161–R208. [Google Scholar]
  25. R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339 (2000), 1–77. [Google Scholar]
  26. A. Mura, G. Pagnini. Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor., 41 (2008), 285003. [CrossRef] [MathSciNet] [Google Scholar]
  27. G. Pagnini. Short note on the emergence of fractional kinetics. Physica A, 409 (2014), 29–34. [CrossRef] [Google Scholar]
  28. G. Pagnini. Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal., 15 (2012), 117–127. [CrossRef] [Google Scholar]
  29. Yu. Povstenko. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, 2015. [Google Scholar]
  30. J. Prehl, C. Essex, K.H. Hoffmann. The superdiffusion entropy production paradox in the space-fractional case for extended entropies. Physica A, 389 (2010), 214–224. [CrossRef] [Google Scholar]
  31. S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, 1993. [Google Scholar]
  32. W.R. Schneider, W. Wyss. Fractional diffusion and wave equations. J. Math. Phys., 30 (1989), 134–144. [CrossRef] [Google Scholar]
  33. S. Umarov. Continuous time random walk models associated with distributed order diffusion equations. Fract. Calc. Appl. Anal., 18 (2015), 821–837. [MathSciNet] [Google Scholar]
  34. Matlab File Exchange, Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, available for download at [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.