Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
|
|
---|---|---|
Page(s) | 18 - 33 | |
DOI | https://doi.org/10.1051/mmnp/201611302 | |
Published online | 21 June 2016 |
- J.-P. Bouchaud, A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep., 195 (1990) 127–293. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 (2000), 1–77 [NASA ADS] [CrossRef] [Google Scholar]
- . The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37 (2004), R161–R208. [Google Scholar]
- R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16 (2014), 24128–24164. [CrossRef] [PubMed] [Google Scholar]
- H. Scher, E. W. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B, 12 (1975), 2455. [CrossRef] [Google Scholar]
- J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, R. Metzler. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett., 106 (2011), 048103. [CrossRef] [PubMed] [Google Scholar]
- I. Golding, E. C. Cox. Physical Nature of Bacterial Cytoplasm. Phys. Rev. Lett., 96 (2006), 098102. [CrossRef] [PubMed] [Google Scholar]
- J. Szymanski, M. Weiss. Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett., 103 (2009), 038102. [CrossRef] [PubMed] [Google Scholar]
- J.-H. Jeon, N. Leijnse, L. B. Oddershede, R. Metzler. Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys., 15 (2013), 045011. [CrossRef] [Google Scholar]
- J. F. Reverey, J.-H. Jeon, H. Bao, M. Leippe, R. Metzler, C. Selhuber-Unkel. Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci. Rep., 5 (2015), 11690. [CrossRef] [PubMed] [Google Scholar]
- A. Caspi, R. Granek, M. Elbaum. Enhanced diffusion in active intracellular transport. Phys. Rev. Lett., 85 (2000), 5655. [CrossRef] [PubMed] [Google Scholar]
- A. Godec, M. Bauer, R. Metzler. Collective dynamics effect transient subdiffusion of inert tracers in gel networks, New J. Phys., 16 (2014), 092002. [CrossRef] [Google Scholar]
- F. Trovato, V. Tozzini. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules. Biophys. J., 107 (2014), 2579–2591. [CrossRef] [PubMed] [Google Scholar]
- G. R. Kneller, K. Baczynski, M. Pasenkiewicz-Gierula. Molecular dynamics simulation and exact results. J. Chem. Phys., 135 (2011), 141105. [CrossRef] [PubMed] [Google Scholar]
- J.-H. Jeon, H. M. Monne, M. Javanainen, R. Metzler. Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett., 109 (2012), 188103. [CrossRef] [PubMed] [Google Scholar]
- S.R. White, M. Barma, Field-induced drift and trapping in percolation networks. J. Phys. A: Math. Gen., 17 (1984), 2995. [CrossRef] [Google Scholar]
- G.H. Weiss, S. Havlin, Some properties of a random walk on a comb structure. Physica A, 134 (1986), 474–482. [CrossRef] [Google Scholar]
- S. Havlin, J.E. Kiefer, G.H. Weiss. Anomalous diffusion on a random comblike structure. Phys. Rev. A, 36 (1987), 1403–1408. [CrossRef] [Google Scholar]
- O. Matan, S. Havlin, D. Staufler. Scaling properties of diffusion on comb-like structures. J. Phys. A: Math. Gen., 22 (1989), 2867. [CrossRef] [Google Scholar]
- V.E. Arkhincheev, E.M. Baskin. Anomalous diffusion and drift in a comb model of percolation clusters. Sov. Phys. JETP, 73 (1991), 161–165. [Google Scholar]
- I.A. Lubashevski, A.A. Zemlyanov. Continuum description of anomalous diffusion on a comb structure. J. Exper. Theor. Phys., 87 (1998), 700–713. [CrossRef] [Google Scholar]
- V.E. Arkhincheev. Anomalous diffusion and charge relaxation on comb model: exact solutions. Physica A, 280 (2000), 304–314; Diffusion on random comb structure: effective medium approximation. Physica A, 307 (2002), 131–141; Unified continuum description for sub-diffusion random walks on multi-dimensional comb model. Physica A, 389 (2010), 1–6. [CrossRef] [Google Scholar]
- E. Baskin, A. Iomin. Superdiffusion on a comb structure. Phys. Rev. Lett., 93 (2004), 120603. [CrossRef] [PubMed] [Google Scholar]
- A. Iomin, E. Baskin. Negative superdiffusion due to inhomogeneous convection. Phys. Rev. E, 71 (2005), 061101. [CrossRef] [Google Scholar]
- L.R. da Silva, A.A. Tateishi, M.K. Lenzi, E.K. Lenzi, P.C. da Silva. Green function for a non-Markovian Fokker-Planck equation: comb-model and anomalous diffusion, Brazilian J. Phys., 39 (2009), 483–487. [Google Scholar]
- O.A. Dvoretskaya, P.S. Kondratenko. Anomalous transport regimes and asymptotic concentration distributions in the presence of advection and diffusion on a comb structure. Phys. Rev. E 79 (2009), 041128. [CrossRef] [Google Scholar]
- I. Podlubny. Fractional Differential Equations. Acad. Press, San Diego etc., 1999. [Google Scholar]
- V. Mendez, A. Iomin. Comb-like models for transport along spiny dendrites. Chaos Solitons Fractals, 53 (2013), 46–51. [CrossRef] [Google Scholar]
- A. Iomin, V. Mendez. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. Phys. Rev. E, 88 (2013), 012706. [CrossRef] [Google Scholar]
- A. Iomin. Subdiffusion on a fractal comb. Phys. Rev. E, 83 (2011), 052106. [CrossRef] [Google Scholar]
- A. Iomin. Superdiffusive comb: Application to experimental observation of anomalous diffusion in one dimension. Phys. Rev. E, 86 (2012), 032101. [CrossRef] [Google Scholar]
- E.K. Lenzi, L.R. da Silva, A.A. Tateishi, M.K. Lenzi, H.V. Ribeiro. Diffusive process on a backbone structure with drift terms. Phys. Rev. E, 87 (2013), 012121. [CrossRef] [Google Scholar]
- D. Shamiryan, M.R. Baklanov, P. Lyons, S. Beckx, W. Boullart, K. Maex. Diffusion of solvents in thin porous films. Colloids and Surfaces A: Physicochem. Eng. Aspects, 300 (2007), 111–116. [CrossRef] [Google Scholar]
- R.T. Sibatov, E.V. Morozova. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors. J. Exper. Theor. Phys., 120 (2015), 860–870. [CrossRef] [Google Scholar]
- L.C.Y. Chu, D. Guha, Y.M.M. Antar. Comb-shaped circularly polarised dielectric resonator antenna. IEEE Electron. Lett., 42 (2006), 785–787. [CrossRef] [Google Scholar]
- M. Thiriet. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems. Springer, New York, 2013. [Google Scholar]
- D. Ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered System. Cambridge University Press, Cambridge, 2000. [Google Scholar]
- A. Rebenshtok, E. Barkai. Occupation times on a comb with ramified teeth. Phys. Rev. E, 88 (2013), 052126. [CrossRef] [Google Scholar]
- V.Yu. Zaburdaev, P.V. Popov, A.S. Romanov, K.V. Chukbar. Stochastic transport through complex comb structures. J. Exper. Theor. Phys, 106 (2008), 999–1005. [CrossRef] [Google Scholar]
- H.V. Ribeiro, A.A. Tateishi, L.G.A. Alves, R.S. Zola, E.K. Lenzi. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure. New J. Phys., 16 (2014), 093050. [CrossRef] [Google Scholar]
- T. Sandev, A. Iomin, H. Kantz. Fractional diffusion on a fractal grid comb. Phys. Rev. E, 91 (2015), 032108. [CrossRef] [Google Scholar]
- Y. He, S. Burov, R. Metzler, E. Barkai. Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett., 101 (2008), 058101. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- J. H. P. Schulz, E. Barkai, R. Metzler. Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett., 110 (2013), 020602. [CrossRef] [PubMed] [Google Scholar]
- Y. Meroz, I. M. Sokolov, J. Klafter. Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist. Phys. Rev. E, 81 (2010), 010101(R). [CrossRef] [Google Scholar]
- Y. Mardoukhi, J.-H. Jeon, R. Metzler. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster. Phys. Chem. Chem. Phys., 17 (2015), 30134. [CrossRef] [PubMed] [Google Scholar]
- T. Sandev, A. Chechkin, H. Kantz, R. Metzler. Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal. 18 (2015), 1006–1038. [CrossRef] [Google Scholar]
- A.V. Chechkin, M. Hofmann, I.M. Sokolov. Continuous-time random walk with correlated waiting times. Phys. Rev. E, 80 (2009), 031112. [CrossRef] [Google Scholar]
- E. Barkai. Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E, 63 (2001), 046118. [CrossRef] [Google Scholar]
- M.M. Meerschaert, P. Straka. Inverse stable subordinators. Math. Model. Nat. Phenom., 8 (2013), 1–16. [Google Scholar]
- A.N. Kochubei. General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory, 71 (2011), 583–600. [CrossRef] [Google Scholar]
- A.V. Chechkin, R. Gorenflo, I.M. Sokolov. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E, 66 (2002), 046129. [CrossRef] [Google Scholar]
- A.V. Chechkin, J. Klafter, I.M. Sokolov. Fractional Fokker-Planck equation for ultraslow kinetics. EPL, 63 (2003), 326. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Chechkin, I.M. Sokolov, J. Klafter. Natural and Modified Forms of Distributed Order Fractional Diffusion Equations, in Fractional Dynamics: Recent Advances, Eds. J. Klafter, S.C. Lim and R. Metzler. World Scientific Publishing Company, Singapore, 2011. [Google Scholar]
- F. Mainardi. Fractional Calculus and Waves in Linear Viscoelesticity: An introduction to Mathematical Models. Imperial College Press, London, 2010. [Google Scholar]
- T. Sandev, Ž. Tomovski. Langevin equation for a free particle driven by power law type of noises. Phys. Lett. A, 378 (2014), 1–9. [CrossRef] [Google Scholar]
- A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher Transcedential Functions. Vol. 3, McGraw-Hill, New York, 1955. [Google Scholar]
- Y.G. Sinai. The limiting behavior of a one-dimensional random walk in a random medium. Theor. Probab. Appl., 27 (1982), 256–268. [CrossRef] [Google Scholar]
- A. Godec, A. V. Chechkin, E. Barkai, H. Kantz, R. Metzler. Localization and universal fluctuations in ultraslow diffusion processes. J. Phys. A: Math. Theor., 47 (2014), 492002. [CrossRef] [Google Scholar]
- A. Bodrova, A. V. Chechkin, A. G. Cherstvy, R. Metzler. Quantifying non-ergodic dynamics of force-free granular gases. Phys. Chem. Chem. Phys., 17 (2015), 21791–21798. [CrossRef] [PubMed] [Google Scholar]
- L. P. Sanders, M. A. Lomholt, L. Lizana, K. Fogelmark, R. Metzler, T. Ambjörnsson. Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion. New J. Phys., 16 (2014), 113050. [CrossRef] [Google Scholar]
- J. Dräger, J. Klafter. Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett., 84 (2000), 5998. [CrossRef] [PubMed] [Google Scholar]
- A. G. Cherstvy, R. Metzler. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys., 15 (2013), 20220–20235. [CrossRef] [PubMed] [Google Scholar]
- M.A. Lomholt, L. Lizana, R. Metzler, T. Ambjörnsson, Microscopic origin of the logarithmic time evolution of aging processes in complex systems. Phys. Rev. Lett., 110 (2013), 208301. [CrossRef] [PubMed] [Google Scholar]
- A. Bodrova, A. V. Chechkin, A. G. Cherstvy, R. Metzler. Ultraslow scaled Brownian motion. New J. Phys., 17 (2015), 063038. [CrossRef] [Google Scholar]
- A.M. Mathai, R.K. Saxena, H.J. Haubold. The H-function: Theory and Applications. New York Dordrecht Heidelberg London, Springer, 2010. [Google Scholar]
- R. Schilling, R. Song, Z. Vondracek. Bernstein Functions. De Gruyter, Berlin, 2010. [Google Scholar]
- C. Berg, G. Forst. Potential Theory on Locally Compact Abelian Groups. Berlin, Springer, 1975. [Google Scholar]
- T.R. Prabhakar. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J., 19 (1971), 7–15. [MathSciNet] [Google Scholar]
- R.K. Saxena, A.M. Mathai, H.J. Haubold, Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci., 209 (2004), 299–310. [CrossRef] [Google Scholar]
- T. Sandev, R. Metzler, Z. Tomovski. Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise. J. Math. Phys., 55 (2014), 023301. [CrossRef] [Google Scholar]
- H. Seybold, R. Hilfer. Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal., 47 (2008), 69–88. [Google Scholar]
- Z.L. Huang, X.L. Jin, C.W. Lim, Y. Wang. Statistical analysis for stochastic systems including fractional derivatives. Nonlin. Dyn., 59 (2010), 339–349. [CrossRef] [Google Scholar]
- W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, Wiley, New York, 1968. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.