Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
Page(s) 34 - 50
Published online 21 June 2016
  1. Ralf Metzler, Joseph Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, dec 2000. [NASA ADS] [CrossRef] [Google Scholar]
  2. Benjamin M. Regner, Dejan Vučinić, Cristina Domnisoru, Thomas M. Bartol, Martin W. Hetzer, Daniel M. Tartakovsky, Terrence J. Sejnowski. Anomalous Diffusion of Single Particles in Cytoplasm. Biophys. J., 104(8):1652–1660, apr 2013. [CrossRef] [PubMed] [Google Scholar]
  3. Brian Berkowitz, Andrea Cortis, Marco Dentz, Harvey Scher. Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys., 44(2):RG2003, 2006. [Google Scholar]
  4. Enrico Scalas. Five Years of Continuous-time Random Walks in Econophysics. Complex Netw. Econ. Interact., 567:3–16, jan 2005. [Google Scholar]
  5. Fidel Santamaria, Stefan Wils, Erik De Schutter, George J. Augustine. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron, 52(4):635–48, nov 2006. [CrossRef] [PubMed] [Google Scholar]
  6. Daniel S. Banks, Cécile Fradin. Anomalous diffusion of proteins due to molecular crowding. Biophys. J., 89(5):2960–71, nov 2005. [CrossRef] [PubMed] [Google Scholar]
  7. Bruce I Henry, Trevor AM Langlands, Peter Straka. An introduction to fractional diffusion. In R L. Dewar and F Detering, editors, Complex Phys. Biophys. Econophysical Syst. World Sci. Lect. Notes Complex Syst., volume 9 of World Scientific Lecture Notes in Complex Systems, pages 37–90, Singapore, 2010. World Scientific. [Google Scholar]
  8. B. I. Henry, T. A. M. Langlands, Peter Straka. Fractional Fokker-Planck Equations for Subdiffusion with Space- and Time-Dependent Forces. Phys. Rev. Lett., 105(17):170602, 2010. [CrossRef] [PubMed] [Google Scholar]
  9. T.A.M. Langlands, B.I. Henry. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys., 205(2):719–736, may 2005. [Google Scholar]
  10. Vicenc Mendez, Sergei Fedotov, Werner Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer Berlin/Heidelberg, 1st edition, 2010. jun [Google Scholar]
  11. Christopher N Angstmann, I C Donnelly, B.I. Henry. Continuous Time Random Walks with Reactions Forcing and Trapping. Math. Model. Nat. Phenom., 8(2):17–27, apr 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Peter Straka, Sergei Fedotov. Transport equations for subdiffusion with nonlinear particle interaction. J. Theor. Biol., 366:71–83, feb 2015. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. Sergei Fedotov, Nickolay Korabel. Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks. Phys. Rev. E, 92(6):062127, dec 2015. [CrossRef] [Google Scholar]
  14. Aleksander Stanislavsky, Karina Weron, Aleksander Weron. Diffusion and relaxation controlled by tempered α-stable processes. Phys. Rev. E, 78(5):6–11, nov 2008. [Google Scholar]
  15. Rina Schumer, David A Benson, Mark M. Meerschaert, Boris Baeumer. Fractal mobile/immobile solute transport. Water Resour. Res., 39(10), oct 2003. [Google Scholar]
  16. Peter Straka, B I Henry. Lagging and leading coupled continuous time random walks, renewal times and their joint limits. Stoch. Process. their Appl., 121(2):324–336, feb 2011. [Google Scholar]
  17. A. Jurlewicz, P. Kern, Mark M. Meerschaert, H.P. P. Scheffler. Fractional governing equations for coupled random walks. Comput. Math. with Appl., 64(10):3021–3036, nov 2012. [Google Scholar]
  18. Marcin Magdziarz, H.P. Scheffler, Peter Straka, P. Zebrowski. Limit theorems and governing equations for Lévy walks. Stoch. Process. their Appl., 125(11):4021–4038, 2015. [Google Scholar]
  19. K. Weron, A. Jurlewicz, Marcin Magdziarz, A. Weron, J. Trzmiel. Overshooting and undershooting subordination scenario for fractional two-power-law relaxation responses. Phys. Rev. E, 81(4):1–7, apr 2010. [Google Scholar]
  20. Mark M. Meerschaert, Peter Straka. Semi-Markov approach to continuous time random walk limit processes. Ann. Probab., 42(4):1699–1723, jul 2014. [Google Scholar]
  21. Ofer Busani. Finite Dimensional Fokker-Planck Equations for Continuous Time Random Walks. arXiv 1510.01150, oct 2015. [Google Scholar]
  22. Mark M. Meerschaert, Peter Straka. Fractional Dynamics at Multiple Times. J. Stat. Phys., 149(5):878–886, nov 2012. [CrossRef] [Google Scholar]
  23. A. Baule, R. Friedrich. A fractional diffusion equation for two-point probability distributions of a continuous-time random walk. Europhys. Lett., 77(1):10002, jan 2007. [Google Scholar]
  24. Mark M. Meerschaert, Alla Sikorskii. Stochastic models for fractional calculus. De Gruyter, Berlin/Boston, 2011. [Google Scholar]
  25. D. Applebaum. Lévy Processes and Stochastic Calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, may 2009. [Google Scholar]
  26. Jean Bertoin. Subordinators: examples and applications, volume 1717 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. [Google Scholar]
  27. Mark M. Meerschaert, Peter Straka. Inverse Stable Subordinators. Math. Model. Nat. Phenom., 8(2):1–16, 2013. [Google Scholar]
  28. A. Weronn Marcin Magdziarz. Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. Phys. Rev. E, 77(3):1–6, mar 2008. [Google Scholar]
  29. Christopher N Angstmann, I C Donnelly, B.I. Henry, T.A.M. Langlands, Peter Straka. Generalized Continuous Time Random Walks, Master Equations, and Fractional Fokker–Planck Equations. SIAM J. Appl. Math., 75(4):1445–1468, jan 2015. [CrossRef] [Google Scholar]
  30. Boris Baeumer, Peter Straka. Fokker–Planck and Kolmogorov Backward Equations for Continuous Time Random Walk scaling limits. Proc. Amer. Math. Soc., arXiv 1501.00533, jan 2016. [Google Scholar]
  31. Marcin Magdziarz, Janusz Gajda, Tomasz Zorawik. Comment on Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion. J. Stat. Phys., 154(5):1241–1250, 2014. [CrossRef] [Google Scholar]
  32. Joseph Horowitz. Semilinear Markov processes, subordinators and renewal theory. Z. Wahrsch. Verw. Geb., 24(3):167–193, 1972. [CrossRef] [Google Scholar]
  33. Jan Rosiński. Tempering stable processes. Stoch. Process. Appl., 117(6):677–707, jun 2007. [CrossRef] [Google Scholar]
  34. Peter Straka. Continuous Time Random Walk Limit Processes: Stochastic Models for Anomalous Diffusion, available at PhD thesis, University of New South Wales, 2011. [Google Scholar]
  35. Janusz Gajda and Marcin Magdziarz. Fractional Fokker-Planck equation with tempered alpha-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E, 82(1):1–6, jul 2010. [Google Scholar]
  36. Eli Barkai, Yuan-Chung Cheng. Aging continuous time random walks. J. Chem. Phys., 118(14):6167, 2003. [Google Scholar]
  37. Ofer Busani. Aging uncoupled continuous time random walk limits. arXiv, 1402.3965, feb 2015. [Google Scholar]
  38. Christopher N Angstmann, Isaac C Donnelly, Bruce I Henry, BA Jacobs, Trevor AM Langlands, and James A Nichols. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations. J. Comput. Phys., 307:508–534, 2016. [CrossRef] [Google Scholar]
  39. Jean Jacod and Albert N Shiryaev. Limit Theorems for Stochastic Processes. Springer, dec 2002. [Google Scholar]
  40. P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics. John Wiley & Sons Inc, New York, second edition, jan 1968. [Google Scholar]
  41. Edwin Hewitt. Integration by Parts for Stieltjes Integrals. Am. Math. Mon., 67(5):419, may 1960. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.