Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
Page(s) 51 - 62
Published online 21 June 2016
  1. D. Kusnezov, A. Bulgac, G.D. Dang, Quantum Lévy Processes and Fractional Kinetics, Phys. Rev. Lett. 82: 1136, 1999. [CrossRef] [Google Scholar]
  2. N. Laskin, Fractals and quantum mechanics, Chaos 10: 780, 2000. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. B.J. West, Quantum Lévy Propagators, J. Phys. Chem. B 104: 3830, 2000. [CrossRef] [Google Scholar]
  4. B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer, New York, 2002. [Google Scholar]
  5. J.-P. Bouchaud, A. Georges, Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications, Phys. Rep. 195: 127, 1990. [Google Scholar]
  6. R. Metzler, J. Klafter, The random walk guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339: 1, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  7. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals. McGraw–Hill, New York, 1965. [Google Scholar]
  8. M. Naber, Time fractional Schrodinger equation, J. Math. Phys. 45: 3339, 2004. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.H. Stone, On one-parameter unitary groups in Hilbert Space, Ann. Math. 33: 643, 1932. [CrossRef] [Google Scholar]
  10. M. Kac, Probability and Related Topics in Physical Sciences. Interscience, NY, 1959. [Google Scholar]
  11. L. Schulman, Techniques and applications of path integration. New York: Wiley; 1981. [Google Scholar]
  12. M. Chaichian, A. Demichev, Path Integrals in Physics: Stochastic Process and Quantum Mechanics, Vol. 1 IOP Publishing, Bristol, 2001. [Google Scholar]
  13. A. Iomin, Fractional-time quantum dynamics, Phys. Rev. E 80: 022103, 2009. [CrossRef] [Google Scholar]
  14. A. Iomin, Fractional-time Schrödinger equation: Fractional dynamics on a comb, Chaos, Solitons & Fractals 44: 348, 2011. [Google Scholar]
  15. J.-N. Wu, C.-H. Huang, S.-C. Cheng, W.-F. Hsieh, Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: A fractional calculus approach, Phys. Rev. A 81: 023827, 2010. [CrossRef] [Google Scholar]
  16. M.A. Leontovich, On a method of solving the problem of propagation of electromagnetic waves along the earth’s surface, Proceedings of the Academy of Sciences of USSR, physics 8, 16 (1944) (in Russian). [Google Scholar]
  17. R.V. Khokhlov, Wave propagation in nonlinear dispersive lines, Radiotekh. Elrctron. 6: 1116, 1961. [Google Scholar]
  18. E.D. Tappert, The Parabolic Approximation Method, Lectures Notes in Physics, 70, in: Wave Propagation and Underwater Acoustics, eds. by J. B. Keller and J.S. Papadakis, Springer, New York, 224-287, 1977 [Google Scholar]
  19. L. Levi, Y. Krivolapov, S. Fishman, M. Segev, Hyper-transport of light and stochastic acceleration by evolving disorder, Nature Phys. 8: 912, (2012). [CrossRef] [Google Scholar]
  20. Y. Krivolapov, L. Levi, S. Fishman, M. Segev, M. Wilkinson, Super diffusion in optical realizations of Anderson localization, New J. Phys. 14: 043047, (2012). [CrossRef] [Google Scholar]
  21. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, M. Segev, Disorder-enhanced transport in photonic quasicrystals, Science 332: 1541, (2011). [CrossRef] [PubMed] [Google Scholar]
  22. M. Rechtsman, L. Levi, B. Freedman, T. Schwartz, O. Manela, M. Segev, Disorder enhanced transport in photonic lattices, Opt. Photon. News (Special Issue) 22: 33, (2011). [CrossRef] [Google Scholar]
  23. B.J. West, P. Grigolini, R. Metzler, T.F. Nonnenmacher, Fractional diffusion and Lévy stable processes, Phys. Rev. E 55: 99, 1997. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Mainardi, Fractional Calculus in Wave Propagation Problems, Forum der Berliner Mathematischer Gesellschaft 19: 20, 2011 (arXiv: [math-ph] 1202.0261). [Google Scholar]
  25. B. Atamaniuk, A.J. Turski, Wave propagation and diffusive transition of oscillations in pair plasmas with dust, AIP Conf. Proc. 1041: 347, 2008. [CrossRef] [Google Scholar]
  26. P. Barthelemy, J. Bertolotti, D.S. Wiersma, A Lévy flight for light, Nature 453: 495 2008. [CrossRef] [PubMed] [Google Scholar]
  27. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons & Fractals 7: 1461, 1996. [Google Scholar]
  28. M.M. Meerschaert, R.J. McGough, Attenuated fractional wave equations with anisotropy, J. Vibration and Acoustics 136: 051004, 2014. [CrossRef] [Google Scholar]
  29. J.M. Carcione, F. Cavallini, F. Mainardi, A. Hanyga, Time-domain modeling of constant-Q seismic waves using fractional derivatives, Pure Appl. Geophys. 159: 1719, (2002). [CrossRef] [Google Scholar]
  30. G. Casasanta, R. Garra, Fractional calculus approach to the acoustic wave propagation with space-dependent sound speed, Signal Image Video Processing 6: 389 2012. [CrossRef] [Google Scholar]
  31. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999). [Google Scholar]
  32. K.B. Oldham, J. Spanier, The Fractional Calculus Academic Press, Orlando, 1974. [Google Scholar]
  33. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993. [Google Scholar]
  34. H. Bateman, A. Erdèlyi, Higher transcendental functions, vol. 3. New York: McGraw-Hill; 1955. [Google Scholar]
  35. Y. Sagi, M. Brook, I. Almog, N. Davidson, Observation of anomalous diffusion and fractional self-similarity in one dimension, Phys. Rev. Lett. 108: 093002, 2012. [CrossRef] [PubMed] [Google Scholar]
  36. S. Marksteiner, K. Ellinger, P. Zoller, Anomalous diffusion and LeÂťvy walks in optical lattices, Phys. Rev. A 53: 3409, 1996. [CrossRef] [PubMed] [Google Scholar]
  37. D.A. Kessler, E. Barkai, Theory of fractional Lévy kinetics for cold atoms diffusing in optical lattices, Phys. Rev. Lett. 108: 230602, 2012. [CrossRef] [PubMed] [Google Scholar]
  38. A. Dechant, E. Lutz, D.A. Kessler, E. Barkai, Fluctuations of time averages for Langevin dynamics in a binding force field, Phys. Rev. Lett. 107: 240603, 2011. [CrossRef] [PubMed] [Google Scholar]
  39. R.K. Saxena, Z. Tomovski, T. Sandev, Fractional Helmholtz, fractional wave equations with Riesz-Feller and generalized Riemann-Liouville fractional derivatives, Eur. J. Pure Appl. Math. 7: 312, 2014. [MathSciNet] [Google Scholar]
  40. R.K. Saxena, Ravi Saxena, S.L. Kalla, Computational solution of a fractional generalization of the Schrödinger equation occurring in quantum mechanics, App. Math. Comp. 216: 1412, (2010). [CrossRef] [Google Scholar]
  41. A. Iomin, Lévy flights in a box, Chaos, Solitons & Fractals 71: 73 (2015). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.