Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
Page(s) 63 - 75
Published online 21 June 2016
  1. N. Agmon. Residence times in diffusion processes J. Chem. Phys. 81 (1984), 3644-3647. [CrossRef] [Google Scholar]
  2. A. Bar-Haim, J. Klafter. On mean residence and first passage times in finite one-dimensional systems J. Chem. Phys. 109 (1998), 5187-5193. [CrossRef] [Google Scholar]
  3. A. Cairoli, A. Baule. Anomalous processes with general waiting times: functionals and multi-point structures arXiv:1411.7005[cond-mat.stat-mech]. [Google Scholar]
  4. S. Carmi, L. Turgeman, E. Barkai. On distributions of functionals of anomalous diffusion paths: a fractional Feynman-Kac approach J. Stat. Phys. 141 (2010), 1071-1092. [CrossRef] [Google Scholar]
  5. G. Foltin, K. Oerding, Z. Racz, R.L. Workman, R.P.K. Zia. Width distribution for random-walk interfaces Phys. Rev. E 50 (1994), R639. [CrossRef] [Google Scholar]
  6. A.H. Gandjbakhche, G.H. Weiss. Descriptive parameter for photon trajectories in a turbid medium Phys. Rev. E 61 (2000), 6958-6970. [CrossRef] [Google Scholar]
  7. K. Godzik, W. Schirmacher. Theory of dispersive transport in amorphous semiconductors J. de Phys. (Paris) 42 (1981), 127-131. [CrossRef] [EDP Sciences] [Google Scholar]
  8. D.S. Grebenkov. Residence times and other functionals of reflected Brownian motion Phys. Rev. E 76 (2007), 041139. [CrossRef] [Google Scholar]
  9. D.S. Grebenkov. NMR survey of reflected Brownian motion Rev. Mod. Phys. 79 (2007), 1077-1137. [CrossRef] [Google Scholar]
  10. R.L. Jack, P. Sollich. Duality symmetries and effective dynamics in disordered hopping models J. Stat. Mech.: Theory and Experiment (2009), P11011. [Google Scholar]
  11. M. Kac. On distributions of certain Wiener functionals Trans. Am. Math. Soc. 65 (1949), 1-13. [Google Scholar]
  12. V.M. Kenkre, Z. Kalay, P.E. Parris. Extensions of effective-medium theory of transport in disordered systems Phys. Rev. E 79 (2009), 011114. [CrossRef] [Google Scholar]
  13. S.N. Majumdar, A. Comtet. Local and occupation time of a particle diffusing in a random medium Phys. Rev. Lett. 89 (2002), 060601. [CrossRef] [PubMed] [Google Scholar]
  14. S.N. Majumdar. Brownian functionals in physics and computer science Curr. Sci. 89 (2005), 2076. [Google Scholar]
  15. B. Movaghar, M. Grunewald, B. Pohlmann, et al. Theory of hopping and multiple-trapping in disordered systems J. Stat. Phys. 30 (1983), 315-334. [CrossRef] [Google Scholar]
  16. O. Ovaskainen, S.J. Cornell. Biased movement at a boundary and conditional occupancy times for diffusion processes J. Appl. Prob. 40 (2003), 557-580. [CrossRef] [Google Scholar]
  17. S. Sabhapandit, S.N. Majumdar, A. Comtet. Statistical properties of functionals of the paths of a particle diffusing in a one-dimensional random potential Phys. Rev. E 73 (2006), 051102. [CrossRef] [Google Scholar]
  18. W. Schirmacher. Microscopic theory of dispersive transport in disordered semiconductors Sol. State Comm. 39 (1981), 893-897. [CrossRef] [Google Scholar]
  19. V.P. Shkilev. Equations for the Distributions of Functionals of a Random-Walk Trajectory in an Inhomogeneous Medium J. Exp. Theor. Phys. 114 (2012), 172-181. [CrossRef] [Google Scholar]
  20. V.P. Shkilev. Boundary conditions for the subdiffusion equation J. Exp. Theor. Phys. 116 (2013), 703-710. [CrossRef] [Google Scholar]
  21. V.P. Shkilev. Subdiffusion of mixed origin with chemical reactions J. Exp. Theor. Phys. 117 (2013), 1066-1070. [CrossRef] [Google Scholar]
  22. L. Turgeman, S. Carmi, E. Barkai. Fractional Feynman-Kac equation for non-Brownian functionals Phys. Rev. Lett. 103 (2009), 190201. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.