Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 3, 2016
Anomalous diffusion
Page(s) 76 - 106
Published online 21 June 2016
  1. T. Akimoto, Distributional responses to biases in deterministic super-diffusion. Phys. Rev. Lett. 108 (2012) 164101. [CrossRef] [PubMed] [Google Scholar]
  2. T. Akimoto, T. Miyagichi. Phase diagram in stored-energy-driven Lévy flight. J. Stat. Phys. 157 (2014) 515-530. [CrossRef] [Google Scholar]
  3. K. H. Andersen, P. Castiglione, A. Mazzino, A. Vulpiani. Simple stochastic models showing strong anomalous diffusion. Eur. Phys. J. B. 18 (2000) 447-452. [CrossRef] [Google Scholar]
  4. G. B. Arfken, H. J. Weber. Mathematical methods for physicists, Academic Press (1995). [Google Scholar]
  5. B. Baeumer, M.M. Meerschaert, J. Mortensen. Space time fractional derivative operators. Proc. Amer. Math. Soc. (ISSN: 0002-9939) 133 (8) (2005) 2273-2282. [Google Scholar]
  6. E. Barkai, E. Aghion, D. A. Kessler. From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. Phys. Rev. X., 4 (2014) 021036. [Google Scholar]
  7. E. Barkai, J. Klafter. Anomalous diffusion in the strong scattering limit: a Lévy walk approach Proceedings of a workshop held in Carry-Le-Rouet, (1997) S. Benkadda and G. M. Zaslavsky Editors Springer (Berlin). [Google Scholar]
  8. P. Becker-Kern, M. Meerschaert, H. Scheffler. Limit theorems for coupled continuous time random walks. Ann. Probab., 32 (1) (2004) 730-756. [MathSciNet] [Google Scholar]
  9. G. Bel, E. Barkai. Weak ergodicity breaking in the continuous time random walk. Phys. Rev. Lett., 94 (2005) 240602. [Google Scholar]
  10. J. P. Bouchaud and A. Georges. Anomalous diffusion in disordered media: Statistical mechanism, models and physical applications. Phys. Rep., 195 (1998) 127-293. [Google Scholar]
  11. R. Burioni, L. Caniparoli, A. Vezzani. Lévy walks and scaling in quenched disordered media. Phys. Rev. E., 81 (2010) 060101. [Google Scholar]
  12. R. Burioni, G. Gradenigo, A. Sarracino, A. Vezzani, A. Vulpiani. Rare events and scaling properties in field-induced anomalous dynamics. J. Stat. Mech. Theory and Experiment, 09 (2013) P09022. [Google Scholar]
  13. G. Campagnola, K. Nepal, B. W. Schroder, O. B. Peersen, D. Krapf. Super diffusive motion of membrane targeting C2 domains. Scientific Reports, 5 (2015) 17721. [CrossRef] [PubMed] [Google Scholar]
  14. B. A. Carreras, V. E. Lynch, D. E. Newman, G. M. Zaslavsky. Anomalous diffusion in a running sandpile model. Phys. Rev. E., 60, (1999) 4770. [CrossRef] [Google Scholar]
  15. P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, A. Vulpiani. On strong anomalous diffusion. Physica D, 134 (1999) 75-93. [NASA ADS] [CrossRef] [Google Scholar]
  16. Clearly, the strip of definition can be extended in some cases. For example, if B(v) is a Gaussian then M(1 / 2) is finite. The choice 1 ≤ Re(q) stems from normalization. [Google Scholar]
  17. L. Comtet. Advanced Combinatorics, D. Reidel Publishing Company (1974). [Google Scholar]
  18. P. de Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy. Flow intermittency, Dispersion and correlated CTRW in Porous media. Phys. Rev. Lett., 110 (2013) 184502. [CrossRef] [Google Scholar]
  19. M. Dentz, T. Le Borgne, D. R. Lester, F. P. J. de Barros. Scaling forms of particles densities for Lévy walks and strong anomalous diffusion. Phys. Rev. E., 92 (2015) 032128. [CrossRef] [Google Scholar]
  20. A. Dhar, K. Saito, B. Derrida. Exact solution of a Levy walk model for anomalous heat transport. Phys. Rev. E., 87 (2013) 010103(R). [CrossRef] [Google Scholar]
  21. S. Fedotov. Single integrodifferential wave equation for a Lévy walk. Phys. Rev. E., 93 (2016) 020101(R). [CrossRef] [PubMed] [Google Scholar]
  22. W. Feller. An introduction to probability theory and its applications 2, John Wiley and Sons, New York (1971). [Google Scholar]
  23. D. Froemberg, M. Schmiedeberg, E. Barkai, V. Zaburdaev. Asymptotic densities of ballistic Lévy walks. Phys. Rev. E., 91 (2015) 022131. [CrossRef] [Google Scholar]
  24. N. Gal, D. Weihs. Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E., 81 (2010) 020903(R). [Google Scholar]
  25. C. Godréche, J. M. Luck. Statistics of the occupation time of renewal processes. J. Stat. Phys., 104 (2001) 489-524. [CrossRef] [Google Scholar]
  26. N. Hazut, S. Medalion, D. A. Kessler, E. Barkai. Fractional Edgeworth Expansion: Corrections to the Gaussian-Lévy Central Limit Theorem. Phys. Rev. E., 91 (2015) 052124. [CrossRef] [Google Scholar]
  27. A. Jurlewicz, P. Kern, M. Meerschaert, H.-P. Scheffler. Fractional governing equations for coupled random walks. Comput. Math. Appl., (ISSN: 08981221) 64 (10) (2012) 3021-3036. [CrossRef] [MathSciNet] [Google Scholar]
  28. D.A. Kessler, E. Barkai. Infinite covariant density for diffusion in logarithmic potential and optical lattices. Phys. Rev. Lett., 105 (2010) 120602. [CrossRef] [Google Scholar]
  29. J. Klafter, A. Blumen, M. F. Shlesinger. Stochastic pathways to anomalous diffusion. Phys. Rev. A., 35 (1987) 3081-3085. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. N. Korabel, E. Barkai. Pesin-Type Identity for Intermittent Dynamics with a Zero Lyapunov Exponent. Phys. Rev. Lett., 102 (2000) 050601. [Google Scholar]
  31. D. Krapf, G. Campagnola, K. Nepal, O. B. Peersen. Strange kinetics of bulk mediated diffusion in living cells. arXiv:1601.04198 [cond-mat.stat-mech] (2016). [Google Scholar]
  32. P. Lévy. Théorie de l’addition des variables aléatoires. (1937) Gauthiers-Villars, Paris. [Google Scholar]
  33. E. Lukacs. Applications of the Faá di Bruno’s formula in mathematical statistics. American Mathematical Monthly, 62 (1955) 340-348. [CrossRef] [MathSciNet] [Google Scholar]
  34. M Magdziarz, HP Scheffler, P Straka, P Zebrowski. Limit theorems and governing equations for Lévy walks Stochastic Processes and their Applications, 125 (2015) 4021-4038. [CrossRef] [MathSciNet] [Google Scholar]
  35. B. B. Mandelbrot, J. W. van Ness, Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev., 10 (1968) 422-437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  36. G. Margolin, V. Protasenko, M. Kuno, E. Barkai. Photon Counting Statistics For Blinking CdSe-ZnS Quantum Dots: A Lévy Walk Process J. of Physical Chemistry B, 110 (2006) 19053-19060. [CrossRef] [Google Scholar]
  37. R. Metzler, J. Klafter. Random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339 (2000) 1-77. [Google Scholar]
  38. Ed. A. D. Poularikas. The Transform and Applications Handbook, CRC Press inc (1995). [Google Scholar]
  39. A. Rebenshtok, E. Barkai. Distribution of Time-Averaged Observables for Weak Ergodicity Breaking. Phys. Rev. Lett., 99 (2007) 210601. [CrossRef] [PubMed] [Google Scholar]
  40. A. Rebenshtok, E. Barkai. Weakly non-ergodic Statistical Physics. J. Stat. Phys., 133, 565-586 (2008). [CrossRef] [MathSciNet] [Google Scholar]
  41. A. Rebenshtok, S. Denisov, P. Hänggi, E. Barkai. Infinite densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett., 112, (2014) 110601. [CrossRef] [PubMed] [Google Scholar]
  42. A. Rebenshtok, S. Denisov, P. Hänggi, E. Barkai. Infinite densities for Lévy walks. Phys. Rev. E. 90 (2014), 062135. [CrossRef] [Google Scholar]
  43. A. Rebenshtok, S. Denisov, P. Hänggi, E. Barkai. Reply to the comment on "Non-Normalizable Densities in Strong Anomalous Diffusion: Beyond the Central Limit Theorem". arXiv:1502.01749 [cond-mat.stat-mech] (2015). [Google Scholar]
  44. D. P. Sanders, H. Larralde. Occurrence of normal and anomalous diffusion in polygonal billiard channels. Phys. Rev. E., 73 (2006) 026205. [CrossRef] [Google Scholar]
  45. J. H. P. Schulz, E. Barkai. Fluctuations around equilibrium laws in ergodic continuous-time random walks. Phys. Rev. E., 91, (2015) 062129. [CrossRef] [MathSciNet] [Google Scholar]
  46. M. F. Shlesinger, B. J. West, J. Klafter. Levy dynamics of enhanced diffusion Application to turbulence. Phys. Rev. Lett., 58, (1987) 1100-1103. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  47. F. D. Stefani, J. P. Hoogenboom, and E. Barkai, Beyond Quantum Jumps: Blinking Nano-scale Light Emitters. Physics Today, 62 (2009) 34-39. [Google Scholar]
  48. P. Straka, B. Henry. Lagging and leading coupled continuous time random walks renewal times and their joint limits. Stochast. Process. Appl. (ISSN: 03044149), 121 (2) (2011) 324-336. [CrossRef] [Google Scholar]
  49. H. Touchette. The large deviation approach to statistical mechanics. Physics Reports, 478 (2009) 1-69. [CrossRef] [MathSciNet] [Google Scholar]
  50. A. Vulpiani, F. Cecconi, M. Cencini, A. Puglisi, D. Vergni (Eds). Large deviations in physics: the legacy of the law of large numbers. Lecture notes in physics (2014). [Google Scholar]
  51. G. H. Weiss. Aspects and Applications of the Random Walk, North-Holland, Amsterdam (1994) . [Google Scholar]
  52. V. Zaburdaev, S. Denisov, P. Hänggi. Space-time velocity correlation function for random walks. Phys. Rev. Lett., 110, 170604 (2013). [CrossRef] [PubMed] [Google Scholar]
  53. V. Zaburdaev, S. Denisov, P. Hänggi. Perturbation spreading in many-particle systems: a random walk approach. Phys. Rev. Lett., 106 (2011) 180601. ibid, Phys. Rev. Lett., 109, 069903 (2012). [Google Scholar]
  54. V. Zaburdaev, S. Denisov, J. Klafter. Lévy walks. Rev. Mod. Phys., 87 (2015) 483. [CrossRef] [Google Scholar]
  55. G. Zumofen, J. Klafter. Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E., 47 (1993) 851-863. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.