Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 4, 2016
Ecology, Epidemiology and Evolution
Page(s) 154 - 166
Published online 19 July 2016
  1. A. Arnold, L. Desvillettes, C. Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Commun. Pure Appl. Anal. 11, 83–96, 2012. [MathSciNet] [Google Scholar]
  2. M. Baar, A. Bovier, N. Champagnat. From stochastic, individual-based models to the canonical equation of adaptive dynamics - in one step. arXiv:1505.02421, 2015. To appear in Ann. Appl. Probab. [PubMed] [Google Scholar]
  3. H. Berestycki, B. Nicolaenko, B. Scheurer. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal., 16 (1985), 1207–1242. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Berestycki, T. Jin, L. Silvestre. Propagation in a nonlocal reaction diffusion equation with spatial and genetic trait structure. arXiv:1411.2019, 2014. To appear in Nonlinearity. [Google Scholar]
  5. N. Berestycki, C. Mouhot, G. Raoul. Existence of self-accelerating fronts for a non-local reaction-diffusion equation. ArXiv:1512.00903, (2015). [Google Scholar]
  6. E. Bouin, V. Calvez. Travelling waves for the cane toads equation with bounded traits. Nonlinearity 27(9), 2233, 2014. Doi:10.1088/0951-7715/27/9/2233. [CrossRef] [Google Scholar]
  7. E. Bouin, V. Calvez. Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts. Archive for Rational Mechanics and Analysis, 217(2), 571–617, 2015. [CrossRef] [Google Scholar]
  8. E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, R. Voituriez. Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. C. R. Math. Acad. Sci. Paris, 350(15-16):761–766, 2012. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Bouin, S. Mirrahimi. A Hamilton-Jacobi limit for a model of population structured by space and trait. Comm. Math Sci., 13(6): 1431–1452, 2015. [CrossRef] [Google Scholar]
  10. F. Campillo, C. Fritsch. Weak convergence of a mass-structured individual-based model. Applied Mathematics & Optimization, Vol. 72 (2015), No. 1, 37–73. [CrossRef] [Google Scholar]
  11. R. S. Cantrell, C. Cosner, Y. Lou. Approximating the ideal free distribution via reaction-diffusion-advection equations. J. Differential Equations, 245 (2008), No. 12, 36873703. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Champagnat, R. Ferrière, S. Méléard. Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models. Th. Pop. Biol., 69(3):297–321, 2006. [Google Scholar]
  13. C. Cosner, J. Dávila, S. Martínez. Evolutionary stability of ideal free nonlocal dispersal. J. Biol. Dyn., Vol. 6 (2012), No. 2, 395405. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. J. Coville, L. Dupaigne. Propagation speed of travelling fronts in non local reaction-Diffusion equations. Nonlin. Anal., 60 (2005), 797–819. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Desvillettes, P.-E. Jabin, S. Mischler, G. Raoul. On selection dynamics for continuous structured populations. Comm. Math. Sci. 6(3), 729–747 (2008). [Google Scholar]
  16. O. Diekmann. A beginner's guide to adaptive dynamics. In Rudnicki, R. (Ed.), Mathematical modeling of population dynamics. Banach Center Publications, Vol. 63, (2004) 47–86. [Google Scholar]
  17. O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame. The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Th. Pop. Biol., 67(4):257–271, 2005. [Google Scholar]
  18. J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski. The evolution of slow dispersal rates: a reaction Diffusion model. J. Math. Biol. (1998) 37: 61–83. [CrossRef] [Google Scholar]
  19. L. C. Evans. The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh, 111 A (1989), 359–375. [CrossRef] [Google Scholar]
  20. S. A. H. Geritz, J. A. J. Metz, E. Kisdi, G. Meszena. Dynamics of adaptation and evolutionary branching. Physical Review Letters 78 (1997) 2024–2027. [CrossRef] [Google Scholar]
  21. R. Hambrock, Y. Lou. The evolution of conditional dispersal strategies in spatially heterogeneous habitats. Bull. Math. Biol. 71 (2009), No. 8, 17931817. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. A. Hastings. Can spatial variation alone lead to selection for dispersal? Theoret. Popul. Biol., 24 (1983), 244–251. [CrossRef] [Google Scholar]
  23. J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics. London Mathematical Society, Student texts 7. Cambridge University Press (2002). [Google Scholar]
  24. V. Hutson, S. Martínez, K. Mischaikow, G. T. Vickers. The evolution of dispersal. J. Math. Biol., 47 (2003), 6, 483–517. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. P.-E. Jabin G. Raoul. Selection dynamics with competition. J. Math. Biol., (2011) 63(3) 493–517. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. K.-Y. Lam Y. Lou. A mutation-selection model for evolution of random dispersal. ArXiv 1506.00662, 2015. [Google Scholar]
  27. P.-L. Lions. Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J., 52 (1985), 793–820. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Lorz, S. Mirrahimi, B. Perthame. Dirac mass dynamics in multidimensional nonlocal parabolic equations. Comm. Partial Differential Equations, 36(6):1071–1098, 2011. [Google Scholar]
  29. J. Maynard Smith. The theory of games and the evolution of animal conicts. J. Theor. Biol. 47 (1974), 209–221. [CrossRef] [PubMed] [Google Scholar]
  30. S. Mirrahimi, B. Perthame. Asymptotic analysis of a selection model with space. J. Math. Pures et Appl. 104 (2015) 1108–1118. [CrossRef] [Google Scholar]
  31. S. Mirrahimi, J.-M. Roquejoffre. Uniqueness in a class of Hamilton-Jacobi equations with constraints. Comptes Rendus Ac. Sc. Paris, Mathematiques, Vol. 353, (2015), 489–494: [CrossRef] [Google Scholar]
  32. S. Mirrahimi, J.-M. Roquejoffre. A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach. Journal of Differential Equations, Vol. 260(5), 2016, 4717–4738. [CrossRef] [Google Scholar]
  33. K. Parvinen, U. Dieckmann, M. Gyllenberg, J. A. J. Metz. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol., (2003) 16:143–53. [CrossRef] [PubMed] [Google Scholar]
  34. B. Perthame, G. Barles. Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J., 57(7):3275–3301, 2008. [CrossRef] [MathSciNet] [Google Scholar]
  35. A. Potapov, U. E. Schläagel, M. A. Lewis. Evolutionary stable diffusive dispersal. DCDS(B), 19(10), 2014, 3319–3340. [Google Scholar]
  36. O. Ronce. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst., (2007) 38:231–253. [CrossRef] [Google Scholar]
  37. O. Turanova. On a model of a population with variable motility. Mathematical Models and Methods in Applied Sciences, Vol. 25, No. 10, 1961–2014 (2015). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.