Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 4, 2016
Ecology, Epidemiology and Evolution
Page(s) 16 - 33
Published online 19 July 2016
  1. M.W. Adamson, A. Yu. Morozov. When can we trust our model predictions? Unearthing structural sensitivity in biological systems. Proc. R. Soc. A, 469 (2012), 20120500. [Google Scholar]
  2. P.A. Abrams, C.J. Walters. Invulnerable prey and the paradox of enrichment. Ecology, 77 (1996), 1125–1133. [CrossRef] [Google Scholar]
  3. A. Beckmann, I. Hense. Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions - a theoretical investigation. Prog. Oceanogr., 75 (2007), 771–796. [CrossRef] [Google Scholar]
  4. M. N. Breckels, N. W. F. Bode, E. A. Codling, M. Steinke. The effect of grazing-mediated DMS production on the behaviour of the copepod Calanus helgolandicus. Mar. Drugs, 11 (2013), 2486–2500. [CrossRef] [PubMed] [Google Scholar]
  5. P.W. Boyd. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol., 38 (2002), 844–861. [CrossRef] [Google Scholar]
  6. P.W. Boyd, S.M. Smith, T. Cowles. Grazing patterns of copepods in the upwelling system off Peru. Limnol. Oceanogr., 25 (1980), 583–596. [CrossRef] [Google Scholar]
  7. A. Calbet, F. Carlotti, R. Gaudy. The feeding ecology of the copepod Centropages typicus (Kroyer). Prog. Oceanogr., 72 (2007), 137–150 [CrossRef] [Google Scholar]
  8. F. Carlotti, and S. Nival Moulting and mortality rates of copepods related to age within stage: Experimental results. Mar. Ecol. Prog. Ser., 84 (1992), 235–243. [CrossRef] [Google Scholar]
  9. F.P. Chavez, K.R. Buck, R.T. Barber. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep Sea Res. 37 (1990), 1733–1752. [CrossRef] [Google Scholar]
  10. P. Chow-Fraser, W.G. Sprules. Type-3 functional response in limnetic suspension-feeders, as demonstrated by in situ grazing rates. Hydrobiologia, 232 (1992), 175–191. [CrossRef] [Google Scholar]
  11. F. Cordoleani, D. Nerini, M. Gauduchon, A. Morozov, J-C. Poggiale. Structural sensitivity of biological models revisited. J. Theor. Biol. 283 (2011), 82–91 [CrossRef] [PubMed] [Google Scholar]
  12. F. Courchamp, L. Berec, J. Gascoigne. Allee Effects in Ecology and Conservation. Oxford Uni. Press, Oxford, 2006. [Google Scholar]
  13. J.J. Cullen, M.R. Lewis, C.O. Davis, R.T. Barber. Photosynthetic characteristics and estimated growth rates indicate that grazing is the proximate control of primary production in the equatorial Pacific. J. Geophys. Res., 97(1992), 639–654 [CrossRef] [Google Scholar]
  14. B. Dennis. Allee effect: population growth, critical density, and chance of extinction. Nat. Resour. Model., 3 (1989), 481–538. [Google Scholar]
  15. E.G. Durbin, A.G. Durbin. Effects of temperature and food abundance on grazing and short-term weight change in the marine copepod Acartia hudsonica. Limnol. Oceanogr., 37 (1996), 361–378 [CrossRef] [Google Scholar]
  16. A. M. Edwards, J. Brindley. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol., 61 (1999), 303–339. [Google Scholar]
  17. C. A. Edwards, H. P. Batchelder, T. M. Powell. Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. J. Plankton Res., 22 (2000a), 1619–1648. [CrossRef] [Google Scholar]
  18. C. A. Edwards, T. A. Powell, H. P. Batchelder. The stability of an NPZ model subject to realistic levels of vertical mixing. J. Mar. Res., 58 (2000b), 37–60. [CrossRef] [Google Scholar]
  19. A.M. Edwards, A Yool. The role of higher predation in plankton population models. J. Plankton Res., 22 (2000), 1085–1112 [CrossRef] [Google Scholar]
  20. K. F. Edwards, M. K. Thomas, C. A. Klausmeier, E. Litchman. Light and growth in marine phytoplankton: Allometric, taxonomic, and environmental variation. Limnol. Oceanogr., 60 (2015), 540–552 [CrossRef] [Google Scholar]
  21. J.Z. Farkas, A. Yu. Morozov, E.G. Arashkevich, A. Nikishina. Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication. Bull. Math. Biol., 77 (2015), 1886–1908. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. B.W. Frost. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser., 39 (1987), 49–68. [CrossRef] [Google Scholar]
  23. G.F. Fussmann, B. Blasius. Community response to enrichment is highly sensitive to model structure. Biol. Lett., 1(2005), 9–12 [CrossRef] [PubMed] [Google Scholar]
  24. A. Gabric, N. Murray, L. Stone, M. Kohl. Modelling the production of dimethylsulfide during a phytoplankton bloom. J. Geophys. Res., 98 (1993), 22805–22816. [CrossRef] [Google Scholar]
  25. M. Genkai-Kato, N. Yamamura. Unpalatable prey resolves the paradox of enrichment. P. Roy. Soc. Lond. B. Bio., 266, (1999), 1215–1219 [CrossRef] [Google Scholar]
  26. W. Gentleman, A. Leising, B. Frost, S. Storm, J. Murray. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-sea Res. Pt. II, 50 (2003), 2847–2875. [CrossRef] [Google Scholar]
  27. I. Gismervik, Top-down impact by copepods on ciliate numbers and persistence depends on copepod and ciliate species composition. J. Plankton Res., 28 (2006), 499–507. [CrossRef] [Google Scholar]
  28. I. Gismervik, T. Andersen. Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model. Mar. Ecol. Prog. Ser., 157(1997), 247–259 [CrossRef] [Google Scholar]
  29. P. J. Hansen, P.K. Bjornsen, B.W Hansen. Zooplankton grazing and growth: Scaling within the 2-2000 μm body size range. Limnol. Oceanogr., 42 (1997), 687–704. [CrossRef] [Google Scholar]
  30. F. C. Hansen, M. Reckermann, W. C. M. Klein Breteler. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser., 102 (1993), 51–57. [CrossRef] [Google Scholar]
  31. C.X.J. Jensen, L.R. Ginzburg. Paradoxes or theoretical failures? The jury is still out. Ecol. Model., 188 (2005), 3–14. [CrossRef] [Google Scholar]
  32. A. Kharab, R. B. Guenther. An Introduction to Numerical Methods: A MATLAB Approach. Third edition. CRC Press, Boca Raton, 2012. [Google Scholar]
  33. T. Kierboe, Saiz, M. Viitasalo. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser., 143(1996), 65–75. [CrossRef] [Google Scholar]
  34. W. Lampert. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs. BMC Biol., 3 (2005), 10. [CrossRef] [PubMed] [Google Scholar]
  35. N. Lewis, A. Morozov, M. Breckels, M. Steinke, and E. Codling. Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model. MMNP, 8(2013), 25–44. [Google Scholar]
  36. K.M. Meyer, M. Vos, W. M. Mooij, W. H. G. Hol, A. J. Termorshuizen, W. H. van der Putten. Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community. PLoS ONE 7 (2012): e49034. [CrossRef] [PubMed] [Google Scholar]
  37. A. Yu. Morozov, M. Sen, M. Banerje. Top-down control in a patchy environment: Revisiting the stabilizing role of food-dependent predator dispersal. Theor. Popul. Biol., 81 (2012), 9–19. [CrossRef] [PubMed] [Google Scholar]
  38. A. Yu. Morozov. Incorporating complex foraging of zooplankton in models: role of micro and mesoscale processes in macroscale patterns. In Dispersal, individual movement and spatial ecology: a mathematical perspective (eds M Lewis, P Maini & S Petrovskii), pp. 1–10. New York, NY: Springer, 2011. [Google Scholar]
  39. A. Yu. Morozov, E.G. Arashkevich, A. Nikishina, K Solovyev. Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Math. Med. Biol., 28 (2011), 185–215 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. A. Yu. Morozov, A. F. Pasternak, E. G. Arashkevich. Revisiting the role of individual variability in population persistence and stability. PLoS ONE, (8) (2013), e70576. [CrossRef] [PubMed] [Google Scholar]
  41. A. Yu. Morozov, S.V. Petrovskii. Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching. PLoS ONE, (8) (2013), e74586. doi: 10.1371/journal.pone.0074586. [CrossRef] [PubMed] [Google Scholar]
  42. A. Mougi, K. Nishimura. A resolution of the paradox of enrichment. J. Theor. Biol., 248, (2007), 194–201 [CrossRef] [PubMed] [Google Scholar]
  43. W.W. Murdoch. The functional response of predators. J. Appl. Ecol., 10 (1973), 335–342 [Google Scholar]
  44. S. Petrovskii S, B. Li, H. Malchow. Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex, 1 (2004), 37–47. [CrossRef] [Google Scholar]
  45. G.A. Polis, R.D. Holt. 1992. Intraguild predation: the dynamics of complex trophic interactions. Trends. Ecol. Evol., 7 (1992), 151–155 [CrossRef] [PubMed] [Google Scholar]
  46. J.E.G. Raymont. Plankton and Productivity in the Oceans. Phytoplankton, Vol. 1 Pergamon. Oxford (1980) [Google Scholar]
  47. A. B. Ryabov, L. Rudolf, B. Blasius. Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer. J. Theor. Biol., 263 (2010), 120–133. [CrossRef] [PubMed] [Google Scholar]
  48. A. B. Ryabov, A. Morozov, B. Blasius Imperfect prey selectivity of predators promotes biodiversity and irregularity in food webs. Ecol. Letts., 18.11 (2015), 1262–1269. [CrossRef] [Google Scholar]
  49. M. L. Rosenzweig. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171 (1971), 385–387. [CrossRef] [PubMed] [Google Scholar]
  50. M. L. Rosenzweig, R. H. MacArthur. Graphical representation and stability conditions of predator-prey interactions. Am. Nat., 97 (1963), 209–223. [CrossRef] [Google Scholar]
  51. S. Roy, J. Chattopadhyay. The stability of ecosystems: a brief overview of the paradox of enrichment. J. Bioscience, 32(2007), 421–428. [CrossRef] [Google Scholar]
  52. P.A. Stephens, W.J. Sutherland. Consequences of the Allee effect for behaviour, ecology and conservation. Trends. Ecol. Evol., 14 (1999), 401–405. [CrossRef] [Google Scholar]
  53. D.K. Stoecker, J.M. Capuzzo. Predation on Protozoa: its importance to zooplankton. J. Plankton Res., 12 (1990), 891–908 [CrossRef] [Google Scholar]
  54. W. K. Tang, and M. Taal Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J. Exp. Mar. Biol. Ecol., 318.1 (2005), 85–98. [CrossRef] [Google Scholar]
  55. P. Tiselius, P.R. Jonsson. Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar. Ecol. Prog. Ser., 66(1990), 23–33 [CrossRef] [Google Scholar]
  56. S. M. Vallina, B. Ward, S. Dutkiewicz, and M. Follows. Maximal feeding with active preyswitching: A kill-the-winner functional response and its effect on global diversity and biogeography, Prog. Oceanogr., 120 (2014), 93–109. [CrossRef] [Google Scholar]
  57. L. van Duren, J. Videler, Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations. Mar. Ecol. Prog. Ser., 126 (1995), 153–161. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.