Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 4, 2016
Ecology, Epidemiology and Evolution
Page(s) 34 - 46
Published online 19 July 2016
  1. J.A.M. Borghans, R.J. De Boer, L.A. Segel. Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol., 58 (1996) 43–63. [CrossRef] [PubMed] [Google Scholar]
  2. J.H. Brown, A. Kodric-Brown. Turnover rate in insular biogeography: Effect of immigration on extinction. Ecology, 58 (1977) 445–449. [CrossRef] [Google Scholar]
  3. R.J. De Boer, A.S. Perelson. Towards a general function describing T cell proliferation. J. Theor. Biol., 175 (1995) 567–576. [CrossRef] [PubMed] [Google Scholar]
  4. R.S. Etienne. Local populations of different sizes, mechanistic rescue effect and patch preference in the Levins metapopulation model. Bull. Math. Biol., 62 (2000) 943–958. [CrossRef] [PubMed] [Google Scholar]
  5. R.S. Etienne. A scrutiny of the Levins metapopulation model. Comments on Theoretical Biology, 7 (2002) 257–281. [CrossRef] [Google Scholar]
  6. M. Gyllenberg, I. Hanski. Single-species metapopulation dynamics: A structured model. Theor. Pop. Biol., 42 (1992) 35–61. [CrossRef] [Google Scholar]
  7. M. Gyllenberg, I. Hanski, A. Hastings. Structured metapopulation models. In I.A. Hanski and M.E. Gilpin (eds.), "Metapopulation biology: Ecology, genetics, and evolution", pp. 93–122, Academic Press, San Diego, CA, 1997. [Google Scholar]
  8. M. Gyllenberg, J.A.J. Metz. On fitness in structured metapopulations. J. Math. Biol., 43 (2001) 545–560. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. I. Hanski. Single-species spatial dynamics may contribute to long-term rarity and commonness. Ecology, 66 (1985) 335–343. [CrossRef] [Google Scholar]
  10. I. Hanski. Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linnean Soc., 42 (1991) 17–38. [CrossRef] [Google Scholar]
  11. I. Hanski. Metapopulation Ecology. Oxford Series in Ecology and Evolution, 324pp., Oxford University Press, New York, 1999. [Google Scholar]
  12. I. Hanski, M. Gilpin. Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linnean Soc., 42 (1991) 3–16. [CrossRef] [Google Scholar]
  13. I. Hanski, M. Gyllenberg. Two general metapopulation models and the core-satellite species hypothesis. Am. Nat., 142 (1993) 17–41. [CrossRef] [Google Scholar]
  14. I. Hanski, D. Simberloff. The metapopulation approach: Its history, conceptual domain, and application to conservation. In I.A. Hanski and M.E. Gilpin (eds.), "Metapopulation biology: Ecology, genetics, and evolution", pp. 5–26, Academic Press, San Diego, CA, 1997. [Google Scholar]
  15. A. Hastings. A metapopulation model with population jumps of varying sizes. Math. Biosci., 128 (1995) 285–298. [CrossRef] [PubMed] [Google Scholar]
  16. G. Huisman, R.J. De Boer. A formal derivation of the "Beddington" functional response. J. Theor. Biol., 185 (1997) 389–400. [CrossRef] [Google Scholar]
  17. R. Levins. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15 (1969) 237–240. [Google Scholar]
  18. R. Levins. Extinction. In M. Gerstenhaber (ed.), "Some Mathematical Problems in Biology", Lectures on Mathematics in the Life Sciences, Vol. 2, pp. 75–107, American Mathematical Society, Providence, Rhode Island, 1970. [Google Scholar]
  19. R. Levins, D. Culver. Regional coexistence of species and competition between rare species. Proc. Nat. Acad. Sci. USA, 68 (1971) 1246–1248. [CrossRef] [Google Scholar]
  20. A.J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore, 1925. [Google Scholar]
  21. A.J. Lotka. Elements of Mathematical Biology. Dover, New York, 1956. [Google Scholar]
  22. M.G. Pedersen, A.M. Bersani, E. Bersani. The total quasi-steady-state approximation for fully competitive enzyme reactions. Bull. Math. Biol., 69 (2007) 433–457. [CrossRef] [PubMed] [Google Scholar]
  23. K.R. Schneider, T. Wilhelm. Model reduction by extended quasi-steady-state approximation. J. Math. Biol., 40 (2000) 443–450. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. S. Schnell, M.J. Chappell, N.D. Evans, M.R. Roussel. The mechanism distinguishablility problem in biochemical kinetics: The single-enzyme, single-substrate reaction as a case study. C.R. Biologies, 329 (2006) 51–61. [CrossRef] [Google Scholar]
  25. L.A. Segel, M. Slemrod. The quasi steady-state assumption: A case study in perturbation. SIAM Rev., 31 (1989) 446–477. [CrossRef] [MathSciNet] [Google Scholar]
  26. A.R. Tzafriri, E.R. Edelman. The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol., 226 (2004) 303–313. [CrossRef] [PubMed] [Google Scholar]
  27. V. Volterra. Variazione e fluttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Lincei., 6 (1926) 30–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.