Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 4, 2016
Ecology, Epidemiology and Evolution
Page(s) 47 - 72
DOI https://doi.org/10.1051/mmnp/201611405
Published online 19 July 2016
  1. W. C. Allee. Animal aggregations, a study in general sociology. The University of Chicago Press, Chicago, Ill., 1931. [Google Scholar]
  2. A. D. Bazykin. Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore, 1998. [Google Scholar]
  3. C. Boettiger, N. Ross, A. Hastings. Early warning signals: the charted and uncharted territories. Theor. Ecol., 6 (2013), 255–264. [CrossRef] [Google Scholar]
  4. F. Campolongo, A. Saltelli, J. Cariboni (2011). From screening to quantitative sensitivity analysis. A unified approach. Comput. Phys. Commun., 182 (2011), 978–988. [CrossRef] [Google Scholar]
  5. J. Cariboni, D. Gatelli, R. Liska, A. Saltelli. The role of sensitivity analysis in ecological modelling. Ecol. Model., 203 (2007), 167–182. [CrossRef] [Google Scholar]
  6. A. Crooks, C. Castle, M. Batty. Key challenges in agent-based modelling for geo-spatial simulation. Comput. Environ. Urban Syst., 32 (2008), 417–430. [CrossRef] [Google Scholar]
  7. A. Dhooge, W. Govaerts, Y. A. Kuznetsov. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. TOMS, 29 (2003), 141–164. [Google Scholar]
  8. E. J. Doedel, B. Oldeman. AUTO07P: Continuation and Bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada, 2009. [Google Scholar]
  9. R. P. Dickinson, R. J. Gelinas. Sensitivity analysis of ordinary differential equation systems - a direct method. Comput. Phys., 21 (1976), 123–143. [CrossRef] [Google Scholar]
  10. T. Filatova, P. H. Verburg, D. C. Parker, C. A. Stannard. Spatial agent-based models for socio-ecological systems: challenges and prospects. Environ. Model. Softw., 45 (2013), 1–7. [CrossRef] [Google Scholar]
  11. C. Folke, S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, C. S. Holling. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst., 35 (2004), 557–581. [CrossRef] [Google Scholar]
  12. G. Glen, K. Isaacs. Estimating Sobol' sensitivity indices using correlations. Environ. Model. Softw., 37 (2012), 157–166. [CrossRef] [Google Scholar]
  13. J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin, 1985. [Google Scholar]
  14. D. Hamby. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess., 32 (1994), 135–154. [Google Scholar]
  15. A. J. Jakeman, R. A. Letcher, J. P. Norton. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw., 21 (2006), 602–614. [CrossRef] [Google Scholar]
  16. M. J. W. Jansen. Analysis of variance designs for model output. Comput. Phys. Commun., 117 (1999), 35–43. [CrossRef] [Google Scholar]
  17. A. M. Kramer, B. Dennis, A. M. Liebhold, J. M. Drake. The evidence for Allee effects. Popul. Ecol., 51 (2009), 341–354. [CrossRef] [Google Scholar]
  18. Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112, Springer-Verlag, New York, 2004. [Google Scholar]
  19. S. Levin, T. Xepapadeas, A. S. Crépin, J. Norberg, A. De Zeeuw, C. Folke, T. Hughes, K. Arrow, S. Barrett, G. Daily, P. Ehrlich, N. Kautsky, K. Mäler, S. Polasky, M. Troell, J. R. Vincent, B. Walker. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ., 18 (2013), 111–132. [CrossRef] [Google Scholar]
  20. T. A. Mara, S. Tarantola. Variance-based sensitivity indices for models with dependent inputs. Reliab. Eng. Syst. Safe., 107 (2012), 115–121. [Google Scholar]
  21. A. M. Mood, F. A. Graybill, D. C. Boes. Introduction to the Theory of Statistics, McGraw-Hill, Singapore 1974. [Google Scholar]
  22. O. Rakovec, M. C. Hill, M. P. Clark, A. H. Weerts, A. J. Teuling, R. Uijlenhoet. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models. Water Resour. Res., 50 (2014), 409–426. [CrossRef] [Google Scholar]
  23. R. Richard, J. Casas, E. McCauley. Sensitivity analysis of continuous-time models for ecological and evolutionary theories. Theor. Ecol., 8 (2015), 481–490. [CrossRef] [Google Scholar]
  24. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto. Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models. John Wiley & Sons, 2004. [Google Scholar]
  25. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola. Global Sensitivity Analyisis: The Primer. John Wiley & Sons, 2008. [Google Scholar]
  26. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun., 181 (2010), 259–270. [CrossRef] [Google Scholar]
  27. M. Scheffer, S. R. Carpenter. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol., 18 (2003), 648–656. [Google Scholar]
  28. M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. Van Nes, M. Rietkerk, G. Sugihara. Early-warning signals for critical transitions. Nature, 461 (2009), 53–59. [CrossRef] [PubMed] [Google Scholar]
  29. A. Schmolke, P. Thorbek, D. L. DeAngelis, V. Grimm. Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol. Evol., 25 (2010), 479–486. [CrossRef] [PubMed] [Google Scholar]
  30. M. Schlüter, R. J. J. McAllister, R. Arlinghaus, N. Bunnefeld, K. Eisenack, F. Hölker, E. J. Milner-Gulland, B. Müller, E. Nicholson, M. Quaas, M. Stöven. New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat. Resour. Model., 25 (2012), 219–272. [CrossRef] [Google Scholar]
  31. R. Seydel. Practical Bifurcation and Stability Analysis, 3rd ed. Springer, New York/Dordrecht Heidelberg, London, 2010. [Google Scholar]
  32. I. M. Sobol'. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul., 55 (2001), 271–280. [Google Scholar]
  33. I. M. Sobol'., S. Kucherenko. Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul., 79 (2009), 3009–3017. [CrossRef] [Google Scholar]
  34. P. A. Stephens, W. J. Sutherland, R. Freckleton. What is the Allee effect? Oikos, 87 (1999), 185–190. [CrossRef] [Google Scholar]
  35. C. M. Taylor, A. Hastings. Allee effects in biological invasions. Ecol. Lett., 8 (2005), 895–908. [CrossRef] [Google Scholar]
  36. G. A. ten Broeke. G. A. K. van Voorn, A. Ligtenberg. Which sensitivity analysis method should I use for my Agent-based Model? JASSS, 19 (2016). [Google Scholar]
  37. E. H. van Nes. M. Scheffer. Alternative attractors may boost uncertainty and sensitivity in ecological models. Ecol. Model. 159 (2003), 117–124. [CrossRef] [Google Scholar]
  38. G. A. K. van Voorn, L. Hemerik, M. P. Boer, B. W. Kooi. Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci., 209 (2007), 451–469. [CrossRef] [PubMed] [Google Scholar]
  39. G. A. K. van Voorn, B. W. Kooi, M. P. Boer. Ecological consequences of global bifurcations in some food chain models. Math. Biosci., 226 (2010), 120–133. [CrossRef] [PubMed] [Google Scholar]
  40. B. Walker, C. S. Holling, S. R. Carpenter, A. Kinzig. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9(2):5. [online] URL: http://www.ecologyandsociety.org/vol9/iss2/art5/ (2004). [Google Scholar]
  41. S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York, 1990. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.