Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 5, 2016
Bifurcations and Pattern Formation in Biological Applications
Page(s) 33 - 48
Published online 07 December 2016
  1. M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, G. M. Süel, Localized cell death focuses mechanical forces during 3D patterning in a biofilm, Proceedings of the National Academy of Sciences, 109 (2012), pp. 18891–18896. [CrossRef] [Google Scholar]
  2. B. P. Ayati, I. Klapper, A multiscale model of biofilm as a senescence-structured fluid, Multiscale Modeling & Simulation, 6 (2007), pp. 347–365. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. M. Baum, A. Kainovic’, T. O’Keeffe, R. Pandita, K. McDonald, S. Wu, P. Webster, Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil, BMC Microbiology, 9 (2009), p. 103. [CrossRef] [PubMed] [Google Scholar]
  4. S. S. Branda, Å. Vik, L. Friedman, R. Kolter, Biofilms: the matrix revisited, Trends in Microbiology, 13 (2005), pp. 20–26. [CrossRef] [PubMed] [Google Scholar]
  5. L. S. Cairns, L. Hobley, N. R. Stanley-Wall, Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms, Molecular Microbiology, 93 (2014), pp. 587–598. [Google Scholar]
  6. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott, Microbial biofilms, Annual Review of Microbiology, 49 (1995), pp. 711–745. [CrossRef] [PubMed] [Google Scholar]
  7. J. W. Costerton, P. S. Stewart, E. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, 284 (1999), pp. 1318–1322. [CrossRef] [PubMed] [Google Scholar]
  8. J. Crank, Free and Moving Boundary Problems, Clarendon Press Oxford, 1984. [Google Scholar]
  9. E. L. Cussler, Diffusion: mass transfer in fluid systems, Cambridge University Press, 2009. [CrossRef] [Google Scholar]
  10. B. D’Acunto, L. Frunzo, M. Mattei, Qualitative analysis of the moving boundary problem for a biofilm reactor model, Journal of Mathematical Analysis and Applications, 438 (2016), pp. 474–491. [Google Scholar]
  11. E. K. Davenport, D. R. Call, H. Beyenal, Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms, Antimicrobial Agents and Chemotherapy, 58 (2014), pp. 4755–4761. [CrossRef] [PubMed] [Google Scholar]
  12. M. E. Davey, G. A. O’toole, Microbial Biofilms: from ecology to molecular genetics, Microbiology and Molecular Biology Reviews, 64 (2000), pp. 847–867. [Google Scholar]
  13. J. Dockery, I. Klapper, Finger formation in biofilm layers, SIAM J. Appl. Math, 62 (2001), pp. 853–869. [Google Scholar]
  14. R. M. Donlan, Biofilms: microbial life on surfaces, Emerging infectious Diseases, 8 (2002), pp. 881–890. [Google Scholar]
  15. D. Espeso, A. Carpio, B. Einarsson, Differential growth of wrinkled biofilms, Physical Review E, 91 (2015), p. 022710. [Google Scholar]
  16. A. S. Fleischer, Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications, Springer, 2015. [CrossRef] [Google Scholar]
  17. M. R. Frederick, C. Kuttler, B. A. Hense, H. J. Eberl, A mathematical model of quorum sensing regulated EPS production in biofilm communities, Theoretical Biology and Medical Modelling, 8 (2011), pp. 1–29. [Google Scholar]
  18. J. Gerwig, T. B. Kiley, K. Gunka, N. Stanley-Wall, J. Stülke, The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis, Microbiology, 160 (2014), pp. 682–691. [CrossRef] [PubMed] [Google Scholar]
  19. C. Giverso, M. Verani, P. Ciarletta, Branching instability in expanding bacterial colonies, Journal of The Royal Society Interface, 12 (2015), p. 20141290. [CrossRef] [Google Scholar]
  20. A. E. Goodman, K. C. Marshall, Genetic Responses of Bacteria at Surfaces, in Microbial Biofilms, H. M. Lappin-Scott and J. W. Costerton, eds., Cambridge University Press, 1995, pp. 80–98. Cambridge Books Online. [CrossRef] [Google Scholar]
  21. L. Hall-Stoodley, P. Stoodley, Evolving concepts in biofilm infections, Cellular Microbiology, 11 (2009), pp. 1034–1043. [Google Scholar]
  22. C. S. Laspidou, B. E. Rittmann, Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances, Water Research, 38 (2004), pp. 3349–3361. [CrossRef] [PubMed] [Google Scholar]
  23. Z. Lewandowski, Biofilms: Recent Advances in their Study and Control, Harwood Academic Publishers, 2000, pp. 1–17. [Google Scholar]
  24. B. Q. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer Science & Business Media, 2005. [Google Scholar]
  25. D. López, H. Vlamakis, R. Kolter, Biofilms, Cold Spring Harbor perspectives in Biology, 2 (2010), p. a000398. [PubMed] [Google Scholar]
  26. M. Mimura, H. Sakaguchi, M. Matsushita, Reaction-diffusion modelling of bacterial colony patterns, Physica A: Statistical Mechanics and its Applications, 282 (2000), pp. 283–303. [CrossRef] [Google Scholar]
  27. G. O’Toole, H. Kaplan, R. Kolter, Biofilm formation as microbial development, Annual Review of Microbiology, 54 (2000), pp. 49–79. [CrossRef] [PubMed] [Google Scholar]
  28. D. Schultz, P. G. Wolynes, E. B. Jacob, J. N. Onuchic, Deciding fate in adverse times: sporulation and competence in Bacillus subtilis, Proceedings of the National Academy of Sciences, 106 (2009), pp. 21027–21034. [Google Scholar]
  29. A. Seminara, T. E. Angelini, J. N. Wilking, H. Vlamakis, S. Ebrahim, R. Kolter, D. A. Weitz, M. P. Brenner, Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix, Proceedings of the National Academy of Sciences, 109 (2012), pp. 1116–1121. [Google Scholar]
  30. P. S. Stewart, Diffusion in Biofilms, Journal of Bacteriology, 185 (2003), pp. 1485–1491. [CrossRef] [PubMed] [Google Scholar]
  31. P. S. Stewart, M. J. Franklin, Physiological heterogeneity in biofilms, Nature Reviews Microbiology, 6 (2008), pp. 199–210. [CrossRef] [PubMed] [Google Scholar]
  32. Y. Tang, A. J. Valocchi, An improved cellular automaton method to model multispecies biofilms, Water Research, 47 (2013), pp. 5729–5742. [CrossRef] [PubMed] [Google Scholar]
  33. M. Trejo, C. Douarche, V. Bailleux, C. Poulard, S. Mariot, C. Regeard, E. Raspaud, Elasticity and wrinkled morphology of Bacillus subtilis pellicles, Proceedings of the National Academy of Sciences, 110 (2013), pp. 2011–2016. [Google Scholar]
  34. X. Wang, S. A. Koehler, J. N. Wilking, N. N. Sinha, M. T. Cabeen, S. Srinivasan, A. Seminara, S. Rubinstein, Q. Sun, M. P. Brenner, et al., Probing phenotypic growth in expanding Bacillus subtilis biofilms, Applied microbiology and biotechnology, 100 (2016), pp. 4607–4615. [CrossRef] [PubMed] [Google Scholar]
  35. J. S. Webb, M. Givskov, S. Kjelleberg, Bacterial biofilms: prokaryotic adventures in multicellularity, Current opinion in microbiology, 6 (2003), pp. 578–585. [Google Scholar]
  36. J. S. Webb, L. S. Thompson, S. James, T. Charlton, T. Tolker-Nielsen, B. Koch, M. Givskov, S. Kjelleberg, Cell death in Pseudomonas aeruginosa biofilm development, Journal of Bacteriology, 185 (2003), pp. 4585–4592. [CrossRef] [PubMed] [Google Scholar]
  37. W. Zhang, A. Seminara, M. Suaris, M. P. Brenner, D. A. Weitz, T. E. Angelini, Nutrient depletion in Bacillus subtilis biofilms triggers matrix production, New Journal of Physics, 16 (2014), p. 015028. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.