Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 5, 2016
Bifurcations and Pattern Formation in Biological Applications
Page(s) 49 - 64
Published online 07 December 2016
  1. A.R.A Anderson and M.A.J Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology, 60(5):857–899, 1998. [CrossRef] [PubMed] [Google Scholar]
  2. D. Basanta, R.A. Gatenby, and A.R.A. Anderson. Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol. Pharm., 9(4):914–921, 2012. [PubMed] [Google Scholar]
  3. D. Basanta, H. Hatzikirou, and A. Deutsch. Studying the emergence of invasiveness in tumours using game theory. Euro. Phys. J. B, 63(3):393–397, 2008. [CrossRef] [EDP Sciences] [Google Scholar]
  4. D. Basanta, J.G. Scott, M.N. Fishman, G. Ayala, S.W. Hayward, and A.R.A. Anderson. Investigating prostate cancer tumour-stroma interactions: clinical and biological insights from an evolutionary game. Br. J. Cancer, 106(1):174–181, 2012. [CrossRef] [PubMed] [Google Scholar]
  5. N. Champagnat, R. Ferrière, and S. Méléard. Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theoretical population biology, 69(3):297–321, 2006. [Google Scholar]
  6. Z. Chen, J. Gao, Y. Cai, and X. Xu. Evolution of cooperation among mobile agents. Physica A: Statistical Mechanics and its Applications, 390(9):1615–1622, 2011. [CrossRef] [Google Scholar]
  7. R.H. Chisholm, T. Lorenzi, L. Desvillettes, and B.D. Hughes. Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences. Zeitschrift für angewandte Mathematik und Physik, 67(4):100, 2016. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L. Neves De Almeida, A. Escargueil, and J. Clairambault. Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation. Cancer research, 75(6):930–939, 2015. [Google Scholar]
  9. P.R. De Andrade, A.M.V. Monteiro, G. Ĉamara, and S. Sandri. Games on cellular spaces: How mobility affects equilibrium. Journal of Artificial Societies and Social Simulation, 12(1):5, 2009. [Google Scholar]
  10. C. Deroulers, M. Aubert, M. Badoual, and B. Grammaticos. Modeling tumor cell migration: from microscopic to macroscopic models. Physical Review E, 79(3):031917, 2009. [Google Scholar]
  11. L.A. Dugatkin and D.S. Wilson. Rover: a strategy for exploiting cooperators in a patchy environment. American Naturalist, pages 687–701, 1991. [CrossRef] [Google Scholar]
  12. R.T. Durrett and S.A. Levin. The importance of being discrete (and spatial). Theoretical Population Biology, 46(3):363–394, 1994. [Google Scholar]
  13. M. Enquist and O. Leimar. The evolution of cooperation in mobile organisms. Animal Behaviour, 45(4):747–757, 1993. [Google Scholar]
  14. T. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction-diffusion systems. Physica D: Nonlinear Phenomena, 67(1):237 - 244, 1993. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Ferriere and R.E. Michod. Invading wave of cooperation in a spatial iterated prisoner's dilemma. Proceedings of the Royal Society of London B: Biological Sciences, 259(1354):77- 83, 1995. [CrossRef] [Google Scholar]
  16. R. Ferriere and R.E. Michod. The evolution of cooperation in spatially heterogeneous populations. American Naturalist, pages 692–717, 1996. [CrossRef] [Google Scholar]
  17. I.M. Hamilton and M. Taborsky. Contingent movement and cooperation evolve under generalized reciprocity. Proceedings of the Royal Society of London B: Biological Sciences, 272(1578):2259–2267, 2005. [CrossRef] [Google Scholar]
  18. C. Hauert. Effects of space in 2_ 2 games. International Journal of Bifurcation and Chaos, 12(07):1531–1548, 2002. [CrossRef] [Google Scholar]
  19. D. Helbing and W. Yu. Migration as a mechanism to promote cooperation. Advances in Complex Systems, 11(04):641–652, 2008. [CrossRef] [Google Scholar]
  20. G. Jian-Yue, W. Zhi-Xi, and W. Ying-Hai. Evolutionary snowdrift game with disordered environments in mobile societies. Chinese Physics, 16(12):3566, 2007. [CrossRef] [Google Scholar]
  21. T. Killingback and M. Doebeli. Spatial evolutionary game theory: Hawks and doves revisited. Proceedings of the Royal Society of London B: Biological Sciences, 263(1374):1135–1144, 1996. [CrossRef] [Google Scholar]
  22. J.C. Koella. The spatial spread of altruism versus the evolutionary response of egoists. Proceedings of the Royal Society of London B: Biological Sciences, 267(1456):1979–1985, 2000. [CrossRef] [Google Scholar]
  23. J.-F. Le Galliard, R. Ferriere, and U. Dieckmann. Adaptive evolution of social traits: origin, trajectories, and correlations of altruism and mobility. The American Naturalist, 165(2):206- 224, 2005. [CrossRef] [PubMed] [Google Scholar]
  24. Y.-T. Lin, H.-X. Yang, Z.-X. Wu, and B.-H. Wang. Promotion of cooperation by aspirationinduced migration. Physica A: Statistical Mechanics and its Applications, 390(1):77–82, 2011. [CrossRef] [Google Scholar]
  25. J. Maynard Smith and G.R. Price. The logic of animal conflict. Nature, 246:15, 1973. [Google Scholar]
  26. S. Meloni, A. Buscarino, L. Fortuna, M. Frasca, J. Gómez-Gardeñes V. Latora, and Y. Moreno. Effects of mobility in a population of prisoner's dilemma players. Physical Review E, 79(6):067101, 2009. [Google Scholar]
  27. M.A. Nowak, S. Bonhoeffer, and R.M. May. More spatial games. International Journal of Bifurcation and Chaos, 4(01):33–56, 1994. [CrossRef] [Google Scholar]
  28. M.A. Nowak, S. Bonhoeffer, and R.M. May. Spatial games and the maintenance of cooperation. Proceedings of the National Academy of Sciences, 91(11):4877–4881, 1994. [CrossRef] [Google Scholar]
  29. M.A. Nowak and R.M. May. Evolutionary games and spatial chaos. Nature, 359(6398):826- 829, 1992. [Google Scholar]
  30. M.A. Nowak and R.M. May. The spatial dilemmas of evolution. International Journal of Bifurcation and Chaos, 3(01):35–78, 1993. [CrossRef] [Google Scholar]
  31. K.J. Painter and T. Hillen. Navigating the flow: individual and continuum models for homing in flowing environments. Journal of The Royal Society Interface, 12(112):20150647, 2015. [CrossRef] [Google Scholar]
  32. Catherine J Penington, Barry D Hughes, and Kerry A Landman. Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Physical Review E, 84(4):041120, 2011. [Google Scholar]
  33. E. Pienaar, V. Dartois, J.J. Linderman, and D.E. Kirschner. In silico evaluation and exploration of antibiotic tuberculosis treatment regimens. BMC Sys. Biol., 9(1):79, 2015. [CrossRef] [Google Scholar]
  34. P.G. Schofield, M.A.J. Chaplain, and S.F. Hubbard. Mathematical modelling of host- parasitoid systems: effects of chemically mediated parasitoid foraging strategies on within-and between-generation spatio-temporal dynamics. Journal of Theoretical Biology, 214(1):31–47, 2002. [Google Scholar]
  35. P.G. Schofield, M.A.J Chaplain, and S.F. Hubbard. Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronised generations. Journal of Mathematical Biology, 50(5):559–583, 2005. [Google Scholar]
  36. E.A. Sicardi, H. Fort, M.H. Vainstein, and J.J. Arenzon. Random mobility and spatial structure often enhance cooperation. Journal of Theoretical Biology, 256(2):240–246, 2009. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  37. J.M. Smith. Evolution and the Theory of Games. Cambridge university press, 1982. [CrossRef] [Google Scholar]
  38. A. Stevens. The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM Journal on Applied Mathematics, 61(1):183- 212, 2000. [Google Scholar]
  39. M. Tomassini, L. Luthi, and M. Giacobini. Hawks and doves on small-world networks. Physical Review E, 73(1):016132, 2006. [Google Scholar]
  40. M.H. Vainstein, A.T.C. Silva, and J.J. Arenzon. Does mobility decrease cooperation? Journal of Theoretical Biology, 244(4):722–728, 2007. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. M. Van Baalen and D.A. Rand. The unit of selection in viscous populations and the evolution of altruism. Journal of Theoretical Biology, 193(4):631–648, 1998. [CrossRef] [PubMed] [Google Scholar]
  42. B.N. Vasiev. Classification of patterns in excitable systems with lateral inhibition. Physics Letters A, 323(3):194–203, 2004. [Google Scholar]
  43. O.O. Vasieva, B.N. Vasiev, V.A. Karpov, and A.N. Zaikin. A model of dictyostelium discoideum aggregation. Journal of theoretical biology, 171(4):361–367, 1994. [Google Scholar]
  44. H.-X. Yang, Z.-X. Wu, and B.-H. Wang. Role of aspiration-induced migration in cooperation. Physical Review E, 81(6):065101, 2010. [Google Scholar]
  45. J. Zhang, W.-Y. Wang, W.-B. Du, and X.-B. Cao. Evolution of cooperation among mobile agents with heterogenous view radii. Physica A: Statistical Mechanics and its Applications, 390(12):2251–2257, 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.