Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 5, 2016
Bifurcations and Pattern Formation in Biological Applications
Page(s) 65 - 85
Published online 07 December 2016
  1. R. Antia, S. Pilyugin, R. Ahmed. Models of immune memory: on the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory. Proc. Natl. Acad. Sci. USA, 95 (1998), no. 25, 14926–14931. [CrossRef] [Google Scholar]
  2. R.P. Araujo, D.L.S. McElwain. A history of the study of solid tumor growth: the contribution of mathematical modeling. Bull. Math. Biol., 66 (2004), 1039–1091. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. Z. Bajzer, T. Carr, K. Josić, S.J. Russell, D. Dingli. Modeling of cancer virotherapy with recombinant measles viruses. J. Theor. Biol., 252 (2008), 109–122. [PubMed] [Google Scholar]
  4. P.C.L. Beverley. Primer: making sense of T-cell memory. Nature Clinical Practice, 4 (2008), no. 1, 43–49. [CrossRef] [Google Scholar]
  5. U. Blohm, D. Potthoff, A.J. van der Kogel, H. Pircher. Solid tumors “melt” from the inside after successful CD8 T cell attack. Eur. J. Immunol, 36 (2006), no. 2, 468–477. [PubMed] [Google Scholar]
  6. S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza. The control of chaos: theory and applications. Physics Reports, 329 (2000), 103–197. [Google Scholar]
  7. F. Le Boeuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J.S. Diallo, M. Kaern M, J.C. Bell. Model-based rational design of an oncolytic virus with improved therapeutic potential. Nat. Commun., 4 (2013), 1974. [PubMed] [Google Scholar]
  8. B.M. Boman, M.S. Wicha. Cancer stem cells: a step toward the cure. J. Clin. Oncol., 26 (2008), 2795–2799. [PubMed] [Google Scholar]
  9. C.J. Breitbach, J.M. Paterson, C.G. Lemay, T.J. Falls, A. McGuire, K.A. Parato, D.F. Stojdl, M. Daneshmand, K. Speth, D. Kirn, J.A. McCart, H. Atkins, J.C. Bell. Targeted inammation during oncolytic virus therapy severely compromises tumour blood ow. Mol. Ther., 15 (2007), no. 9, 1686–1693. [CrossRef] [PubMed] [Google Scholar]
  10. B.W. Bridle, K.B. Stephenson, J.E. Boudreau, S. Koshy, N. Kazdhan, E. Pullenayegum, J. Brunelliére, J.L. Bramson, B.D. Lichty, Y. Wan. Potentiating cancer immunotherapy using an oncolytic virus. Mol. Ther., 18 (2010), no. 8, 1430–1439. [CrossRef] [PubMed] [Google Scholar]
  11. K.T. Brunner, D. Hurez an R.T. McCluskey, B. Benacerraf. Blood clearance rates of P32-labeled Vesicular Stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice. J. Immunol., 85 (1960), 99–105. [PubMed] [Google Scholar]
  12. K.W. Brunson, G.L. Nicholson. Experimental brain metastasis. Brain metastasis (L. Weiss, H.A. Gilbert, J.B. Posner, eds.) Springer 1980, 50–65. [CrossRef] [Google Scholar]
  13. S. Bunimovich-Mendrazitsky, E. Shochat, L. Stone. Mathematical model of BCG immunotherapy in superficial bladder cancer. Bull. Math. Biol., 69 (2007), 1847–1870. [Google Scholar]
  14. H.M. Byrne, S.M. Cox, C.E. Kelly. Macrophage-tumor interactions: In vivo dynamics. Discrete and Continuous dynamical systems - Series B, 4 (2004), no. 1, 81–98. [MathSciNet] [Google Scholar]
  15. R.S. Coffin. Oncolytic immunotherapy: an emerging new modality for the treatment of cancer. Annals of Oncology (2016), 1–4. [Google Scholar]
  16. B.J. Coventry, M.L. Ashdown, M.A. Quinn, S.N. Markovic, S.L. Yatomi-Clarke, A.P. Robinson. CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool?. J. Translat. Med., 7 (2009), 102. [CrossRef] [Google Scholar]
  17. M.A. Croyle, S.M. Callahan, A. Auricchio, G. Schumer, K.D. Linse, HJ.M. Wilson, L.J. Brunner, G.P. Kobinger. PEGylation of a Vesicular Stomatitis Virus G pseudotyped lentivirus vector prevents inactivation in serum. J. Virol., 78 (2004), 912–921. [PubMed] [Google Scholar]
  18. A. Dalgleish. The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines. QJM, 92 (1999), no. 6, 347–359. [CrossRef] [PubMed] [Google Scholar]
  19. L. de Pillis, A. Gallegos, A. Radunskaya. A model of dendritic cell therapy for melanoma. Frontiers in Oncology, 3 (2013), 56. [PubMed] [Google Scholar]
  20. L.G. de Pillis, A.E. Radunskaya, C.L. Wiseman. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer. Res., 65 (2005), no. 17, 7950–7958. [Google Scholar]
  21. N.J. DePolo, J.J. Holland. The intracellular half-lives of nonreplicanting nucleocapsids of di particles of wild type and mutant strains of vesicular stomatitis virus. Virology, 151 (1986), no. 2, 371–378. [CrossRef] [PubMed] [Google Scholar]
  22. D. Dingli, C. Offord, R. Myers, K.-W. Peng, T.W. Carr, K. Josic, S.J. Russell, Z. Bajzer. Dynamics of multiple myeloma tumor therapy with a recombinant measles virus. Cancer Gene Ther., 16 (2009), no. 12, 873–882. [CrossRef] [PubMed] [Google Scholar]
  23. A. Durudas, H.-L. Chen, M.A. Gasper, V. Sundaravaradan, J.M. Milush, G. Silvestri, W. Johnson, L.D. Giavedoni, D.L. Sodora. Differential innate immune responses to low or high dose of oral SIV challenge in Rhesus macaques. Curr. HIV Res., 9 (2011), no. 5, 276–288. [PubMed] [Google Scholar]
  24. A.K. Eerola, Y. Soini, P. Pääkkö. A high number of tumor-infiltrating lymphocytes are associated with a small tumour size, low tumour stage and a favourable prognosis in operated small cell lung carcinoma. Clin. Cancer Res., 6 (2000), 1875–1881. [PubMed] [Google Scholar]
  25. R. Eftimie, J.L. Bramson, D.J.D. Earn. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol., 73 (2010), no. 1, 2–32. [Google Scholar]
  26. R. Eftimie, J.L. Bramson, D.J.D. Earn. Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma. J. Theor. Biol., 265 (2010), no. 3, 467–480. [PubMed] [Google Scholar]
  27. R. Eftimie, J. Dushoff, B.W. Bridle, J.L. Bramson, D.J.D. Earn. Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions. Bull. Math. Biol., 73 (2011), 2932–2961. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. S. Friberg, S. Mattson. On the growth rates of human malignant tumours: implications for medical decision making. J. Surgical Oncology, 65 (1997), 284–297. [CrossRef] [Google Scholar]
  29. T.F. Gajewski, H. Schreiber, Y.-X. Fu. Innate and adaptive immune cells in the timor microenvironment. Nat. Immunol., 14 (2013), no. 10, 1014–1022. [CrossRef] [PubMed] [Google Scholar]
  30. P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky. Tumor development under angiogenic signalling: a dynamical theory of tumor growth, treatment response, and post vascular dormancy. Cancer Res., 59 (1999), 4770–4775. [Google Scholar]
  31. B.-Y. Hwang, D.V. Schaffer. Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors. Gene Therapy, 20 (2013), 807–815. [CrossRef] [PubMed] [Google Scholar]
  32. I.P. Janecka. Cancer control through principles of systems science, complexity, and chaos theory: a model. Int. J. Med. Sci., 4 (2007), 164–173. [PubMed] [Google Scholar]
  33. P.S. Kim, J.J. Crivelli, I.-K. Choi, C.-O. Yun, J.R. Wares. Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Mathematical Biosciences and Engineering, 12 (2015), no. 4, 841–858. [CrossRef] [MathSciNet] [Google Scholar]
  34. D. Kirschner, J.C. Panetta. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol., 37 (1998), 235–252. [CrossRef] [PubMed] [Google Scholar]
  35. K.M. Kokolus, M.L. Capitano, C.-T. Lee, J.W.-L. Eng, J.D. Waight, B.L. Hylander, S. Sexton C.-C. Hong, C.J. Gordon, S.I. Abrams, E.A. Repasky. Baseline tumour growth and immune control in laboratory mice are significantly inuenced by subthermoneutral housing temperature. Proc. Natl. Acad. Sci. USA, 110 (2013), no. 50, 20176–20181. [CrossRef] [Google Scholar]
  36. T.M. Kündig, M.F. Bachmann, S. Oehen, U.W. Hoffmann, J.J.L. Simard, C.P. Kalberer, H. Pircher, P.S. Ohashi, H. Hengartner, R.F. Zinkernagel. On the role of antigen maintaining cytotoxic T-cell memory. Proc. Natl. Acad. Sci. USA, 93 (1996), 9716–9723. [CrossRef] [Google Scholar]
  37. U. Ledzewicz, H. Schättler. Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM. J. Control Optim., 46 (2007), 1052–1079. [Google Scholar]
  38. C. Letellier, F. Denis, L.A. Aguirre. What can be learned from a chaotic cancer model? J. Theor. Biol., 322 (2013), 7–16. [Google Scholar]
  39. Q.-X. Li, Guohong Liu, F. Wong-Staal. Oncolytic virotherapy as a personalized cancer vaccine. Int. J. Cancer, 123 (2008), 493–499. [CrossRef] [PubMed] [Google Scholar]
  40. A.G. Lópea, J.M. Seoane, M.A.F. Sanjuán. A validated mathematical model of tumour growth including tumour-host interaction, cell-mediated immune response and chemotherapy. Bull. Math. Biol., 76 (2014), 2884–2906. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. E.N. Lorenz. Deterministic nonperiodic ow. J. Atmospheric Sciences, 20 (1963), 130–141. [Google Scholar]
  42. M.C. Mackey, L. Glass. Oscillations and chaos in physiological control systems. Science, 197 (1977), 287–289. [CrossRef] [PubMed] [Google Scholar]
  43. T. Mattfeldt. Nonlinear deterministic analysis of tissue texture: a stereological study on mastopathic and mammary cancer tissue using chaos theory. J. Microscopy, 185 (1997), no. 1, 47–66. [CrossRef] [Google Scholar]
  44. J.D. Murray. Mathematical Biology I. An Introduction. Springer 2002. [Google Scholar]
  45. A. Naldini, F. Carraro. Role of inammatory mediators in angiogenesis. Current Drug Targets - Inammation & Allergy, 4 (2005), 3–8. [CrossRef] [Google Scholar]
  46. N.I.H., O.A.C.U.. Guidelines for endpoints in animal study proposals. 1996\_Endpoints.pdf. [Google Scholar]
  47. M.R. Owen, J.A. Sherratt. Modeling the macrophage invasion of tumors: effects on growth and composition. Mathematical Medicine and Biology, 15 (1998), 165–185. [CrossRef] [Google Scholar]
  48. K.A. Parato, D. Senger, P.A.J. Forsyth, J.C. Bell. Recent progress in the battle between oncolytic viruses and tumors. Nature Reviews Cancer, 5 (2005), 965–976. [CrossRef] [PubMed] [Google Scholar]
  49. M.R. Patel, R.A. Kratzke. Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl. Res., 161 (2013), no. 4, 355–364. [Google Scholar]
  50. T.D. Pham, K. Ichikawa. Spatial chaos and complexity in the intracellular space of cancer and normal cells. Theoretical Biology and Medical Modeling, 10 (2013), 62. [CrossRef] [Google Scholar]
  51. D.M. Rommelfanger, C.P. Offord, J. Dev, Z. Bajzer, R.G. Ville, D. Dingli. Dynamics of melanoma tumor therapy with vesicular stomatitis virus: explaining the variability in outcomes using mathematical modeling. Gene Ther., 19 (2012), no. 5, 543–549. [PubMed] [Google Scholar]
  52. S.A. Rosenberg, J.C. Yang, N.P. Restifo. Cancer immunotherapy: moving beyond current vaccines. Nature Medicine, 10 (2004), 909–915. [CrossRef] [PubMed] [Google Scholar]
  53. S.J. Russell, K.-W. Peng, J.C. Bell. Oncolytic virotherapy. Nat. Biotechnol., 30 (2012), no. 7, 658–670. [CrossRef] [PubMed] [Google Scholar]
  54. D. Sargent, A. Sobrero, A. Grothey, M.J. O’Connell, M. Buyse, T. Andre, Y. Zheng, E. Green, R. Labianca, C. O’Callaghan, J.F. Seitz, G. Francini, D. Haller, G. Yothers, R. Goldberg, A. de Gramont. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomised trials. J. Clin. Oncol., 27 (2009), 872–877. [PubMed] [Google Scholar]
  55. E.D. Schwab, K.J. Pienta. Cancer as a complex adaptive system. Medical Hypotheses, 47 (1996), 235–241. [CrossRef] [PubMed] [Google Scholar]
  56. J.A. Spratt, D. von Fournier, J.S. Spratt, E.E. Weber. Decelerating growth and human breast cancer. Cancer, 71 (1993), no. 6, 2013–2019. [CrossRef] [PubMed] [Google Scholar]
  57. M.Z. Tesfay, A.C. Kirk, E.M. Hadac, G.E. Griesmann, M.J. Federspiel G.N. Barber, S.M. Henry, K.W. Peng, S.J. Russell. PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J. Virol, 87 (2013), no. 7, 3752–3759. [PubMed] [Google Scholar]
  58. L.M. Wein, J.T. Wu, D.H. Kirn. Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res., 63 (2003), 1317–1324. [Google Scholar]
  59. K.P. Wilkie, P. Hahnfeldt. Modelling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inammation. ArXiv, 1305.3634 (2014), 1–24. [Google Scholar]
  60. M.A. Williams, M.J. Bevan. Effector and memory CTL differentiation. Annu. Rev. Immunol., 25 (2007), 171–192. [CrossRef] [PubMed] [Google Scholar]
  61. D. Wodarz. Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res., 61 (2001), 3501–3507. [Google Scholar]
  62. D. Wodarz. Computational modelling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences and Engineering, 10 (2013), 939–957. [CrossRef] [MathSciNet] [Google Scholar]
  63. D. Wodarz, A. Hofacre, J.W. Lau, Z. Sun, H. Fan, N.L. Komarova. Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches. PLoS Comput. Biol., 8 (2011), no. 6, e1002547. [Google Scholar]
  64. D. Wodarz, N. Komarova. Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PLoS One, 4 (2009), no. 1, e4271. [CrossRef] [PubMed] [Google Scholar]
  65. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 16 (1985), 285–317. [Google Scholar]
  66. J.T. Wu, H.M. Byrne, D.H. Kirn, L.M. Wein. Modelling and analysis of a virus that replicates selectively in tumor cells. Bull. Math. Biol., 63 (2001), no. 4, 731–768. [CrossRef] [PubMed] [Google Scholar]
  67. A. Zippelius, P. Batard, V. Rubio-Godoy, G. Bioley, D. Liénard, F. Lejeune, D. Rimoldi, P. Guillaume, N. Meidenbauer, A. Mackensen, N. Rufer, N. Lubenow, D. Speiser, J.-C. Cerottini, P. Romero, M.J. Pittet. Effector function of human tumour-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res., 64 (2004), 2865–2873. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.