Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 6, 2016
Page(s) 45 - 70
Published online 04 January 2017
  1. Altinok, A., Gonze, D., Lévi, F., Goldbeter, A.: An automaton model for the cell cycle. Interface focus 1, 36–47 (2011) [CrossRef] [PubMed] [Google Scholar]
  2. Altinok, A., Lévi, F., Goldbeter, A.: A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59, 1036–1010 (2007) [CrossRef] [PubMed] [Google Scholar]
  3. Altinok, A., Lévi, F., Goldbeter, A.: Optimizing temporal patterns of anticancer drug delivery by simulations of a cell cycle automaton. In: M. Bertau, E. Mosekilde, H. Westerhoff (eds.) Biosimulation in Drug Development, pp. 275–297. Wiley (2008) [Google Scholar]
  4. Altinok, A., Lévi, F., Goldbeter, A.: Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur. J. Pharm. Sci. 36, 20–38 (2009) [CrossRef] [PubMed] [Google Scholar]
  5. Basdevant, C., Clairambault, J., Lévi, F.: Optimisation of time-scheduled regimen for anti-cancer drug infusion. Mathematical Modelling and Numerical Analysis 39, 1069–1086 (2006) [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Amer. Math. Soc. (1994) [Google Scholar]
  7. Bertsekas, D.: Constrained Optimization and Lagrange multiplier method. Academic Press, NY; republished by Athena Scientific, MA,1997 (1982) [Google Scholar]
  8. Billy, F., Clairambault, J.: Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete and Continuous Dynamical Systems - Series B 18(4), 865–889 (2013). DOI 10.3934/dcdsb.2013.18.865. URL [CrossRef] [MathSciNet] [Google Scholar]
  9. Billy, F., Clairambault, J., Delaunay, F., Feillet, C., Robert, N.: Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences and Engineering 10(1), 1–17 (2013). DOI 10.3934/mbe.2013.10.1. URL [CrossRef] [MathSciNet] [Google Scholar]
  10. Billy, F., Clairambault, J., Fercoq, O.: Optimisation of cancer drug treatments using cell population dynamics. In: A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler (eds.) Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, pp. 265–309. Springer (2013) [CrossRef] [Google Scholar]
  11. Billy, F., Clairambaultt, J., Fercoq, O., Gaubert, S., Lepoutre, T., Ouillon, T., Saito, S.: Synchronisation and control of proliferation in cycling cell population models with age structure. Mathematics and Computers in Simulation 96, 66–94 (2014). DOI 10.1016/j.matcom.2012.03.005. URL [CrossRef] [MathSciNet] [Google Scholar]
  12. Bocci, G., Danesi, R., Paolo, A.D., Innocenti, F., Allegrini, G., etal., A.F.: Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5- fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients. Clin. Cancer Res. 6, 3032–37 (2000) [PubMed] [Google Scholar]
  13. Bokemeyer, C., Bondarenko, I., Makhson, A., Hartmann, J.T., Aparicio, J., de Braud, F., Donea, S., Ludwig, H., Schuch, G., Stroh, C., Loos, A.H., Zubel, A., Koralewski, P.: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27(5), 663–671 (2009). DOI 10.1200/JCO.2008.20.8397 . URL [CrossRef] [PubMed] [Google Scholar]
  14. Chisholm, R.H., Lorenzi, T., Clairambault, J.: Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation. Biochimica et Biophysica Acta (BBA) - General Subjects 1860(11), 2627–2645 (2016). DOI 10.1016/j.bbagen.2016.06.009 [Google Scholar]
  15. Chisholm, R.H., Lorenzi, T., Lorz, A., Larsen, A.K., de Almeida, L.N., Escargueil, A., Clairambault, J.: Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation. Cancer Res 75(6), 930–939 (2015). DOI 10.1158/0008-5472.CAN-14-2103 [CrossRef] [PubMed] [Google Scholar]
  16. Clairambault, J.: Modeling oxaliplatin drug delivery to circadian rhythm in drug metabolism and host tolerance. Adv. Drug Deliv. Rev. 59, 1054–1068 (2007) [CrossRef] [PubMed] [Google Scholar]
  17. Clairambault, J.: Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments. Mathematical Modelling of Natural Phenomena 4, 12–67 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  18. Clairambault, J.: Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach. Personalized Medicine 8, 271–286 (2011) [CrossRef] [PubMed] [Google Scholar]
  19. Clairambault, J., Gaubert, S., Lepoutre, T.: Comparison of Perron and Floquet eigenvalues in age-structured cell division models. Mathematical Modelling of Natural Phenomena 4, 183–209 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  20. Clairambault, J., Gaubert, S., Lepoutre, T.: Circadian rhythm and cell population growth. Mathematical and Computer Modelling 53, 1558–1567 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  21. Clairambault, J., Gaubert, S., Perthame, B.: An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age-structured equations. C. R. Acad. Sci. (Paris) Ser. I Mathématique 345, 549–554 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  22. Clairambault, J., Laroche, B., Mischler, S., Perthame, B.: A mathematical model of the cell cycle and its control. Tech. rep., Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France (2003). URL [Google Scholar]
  23. Clairambault, J., Michel, P., Perthame, B.: Circadian rhythm and tumour growth. C. R. Acad. Sci. (Paris) Ser. I Mathématique (Équations aux dérivées partielles) 342, 17–22 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  24. Clairambault, J., Michel, P., Perthame, B.: A model of the cell cycle and its circadian control. In: A. Deutsch, L. Brusch, H. Byrne, G. de Vries, J. Herzel (eds.) Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis, pp. 239–251. Birkhäuser, Boston (2007) [Google Scholar]
  25. de Gramont, A., Figer, A., Seymour, M., Homerin, M., Hmissi, A., Cassidy, J., Boni, C., Cortes-Funes, H., Cervantes, A., Freyer, G., Papamichael, D., Le Bail, N., Louvet, C., Hendler, D., de Braud, F., Wilson, C., Morvan, F., Bonetti, A.: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16), 2938–2947 (2000) [PubMed] [Google Scholar]
  26. Diasio, R., Harris, B.: Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet. 16, 215–237 (1989) [CrossRef] [PubMed] [Google Scholar]
  27. Dimitrio, L., Clairambault, J., Natalini, R.: A spatial physiological model for p53 intracellular dynamics. J Theor Biol 316, 9–24 (2013). DOI 10.1016/j.jtbi.2012.08.035 . URL [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. Eliaš, J., Clairambault, J.: Reaction-diffusion systems for spatio-temporal intracellular protein networks: A beginner’s guide with two examples. Comput Struct Biotechnol J 10(16), 12–22 (2014). DOI 10.1016/j.csbj.2014.05.007 . URL [CrossRef] [PubMed] [Google Scholar]
  29. Eliaš, J., Dimitrio, L., Clairambault, J., Natalini, R.: The dynamics of p53 in single cells: physiologically based ode and reaction-diffusion pde models. Phys Biol 11(4), 045,001 (2014). DOI 10.1088/1478-3975/11/4/045001 . URL [Google Scholar]
  30. Eliaš, J., Dimitrio, L., Clairambault, J., Natalini, R.: The p53 protein and its molecular network: modelling a missing link between dna damage and cell fate. Biochim Biophys Acta - Proteins and Proteomics 1844(1 Pt B), 232–247 (2014). DOI 10.1016/j.bbapap.2013.09.019 . URL [CrossRef] [Google Scholar]
  31. Faivre, S., Chan, D., Salinas, R., Woynarowska, B., Woynarowski, J.M.: DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol 66(2), 225–237 (2003) [CrossRef] [PubMed] [Google Scholar]
  32. Fercoq, O.: Perron vector optimization applied to search engines. Applied Numerical Mathematics 75, 77–99 (2014) [CrossRef] [MathSciNet] [Google Scholar]
  33. Filipski, E., Innominato, P.F., Wu, M., Li, X.M., Iacobelli, S., Xian, L.J., Lévi, F.: Effects of light and food schedules on liver and tumor molecular clocks in mice. J Natl Cancer Inst 97(7), 507–517 (2005). DOI 10.1093/jnci/dji083 . URL [CrossRef] [PubMed] [Google Scholar]
  34. Filipski, E., King, V.M., Li, X., Granda, T.G., Mormont, M.C., Liu, X., Claustrat, B., Hastings, M.H., Lévi, F.: Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94(9), 690–697 (2002) [CrossRef] [PubMed] [Google Scholar]
  35. Fischel, J., Etienne, M., Formento, P., Milano, G.: Search for the optimal schedule for the oxaliplatin/5-fluorouracil association modulated or not by folinic acid: preclinical data. Clinical Cancer Research 4(10), 2529 (1998) [Google Scholar]
  36. Fonville, N.C., Bates, D., Hastings, P.J., Hanawalt, P.C., Rosenberg, S.M.: Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet 6(3), e1000,865 (2010). DOI 10.1371/journal.pgen.1000865 . URL [CrossRef] [Google Scholar]
  37. Gabriel, P., Garbett, S.P., Tyson, D.R., Webb, G.F., Quaranta, V.: The contribution of age structure to cell population responses to targeted therapeutics. Journal of Theoretical Biology 311, 19–27 (2012) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  38. Gatenby, R.: A change of strategy in the war on cancer. Nature 459, 508–509 (2009) [CrossRef] [PubMed] [Google Scholar]
  39. Gatenby, R., Silva, A., Gillies, R., Friden, B.: Adaptive therapy. Cancer Research 69, 4894–4903 (2009) [CrossRef] [PubMed] [Google Scholar]
  40. Gérard, C., Goldbeter, A.: Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci U S A 106(51), 21,643–21,648 (2009). DOI 10.1073/pnas.0903827106 . URL [CrossRef] [Google Scholar]
  41. Gérard, C., Goldbeter, A.: From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits. Chaos 20(4), 045,109 (2010). DOI 10.1063/1.3527998 . URL [CrossRef] [PubMed] [Google Scholar]
  42. Gérard, C., Goldbeter, A.: A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle. Interface Focus 1(1), 24–35 (2011). DOI 10.1098/rsfs.2010.0008 . URL [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  43. Gréchez-Cassiau, A., Rayet, B., Guillaumond, F., Teboul, M., Delaunay, F.: The circadian clock component BMAL1 is a critical regulator of p21(WAF1/CIP1) expression and hepatocyte proliferation. J. Biol. Chem. 283, 4535–42 (2008) [CrossRef] [PubMed] [Google Scholar]
  44. Gérard, C., Goldbeter, A.: Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLoS Comput Biol 8(5), e1002,516 (2012). DOI 10.1371/journal.pcbi.1002516 . URL [CrossRef] [PubMed] [Google Scholar]
  45. Hinow, P., Wang, S., Arteaga, C., Webb, G.: A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a her2 tyrosine kinase inhibitor. Theoretical Biology and Medical Modelling 4:14 (2007). Doi:10.1186/1742-4682-4-14 [CrossRef] [MathSciNet] [Google Scholar]
  46. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag Berlin and Heidelberg GmbH & Co. K (1966) [Google Scholar]
  47. Lévi, F.: Cancer chronotherapeutics. Special issue of Chronobiology International 19, 1–19 (2002) [CrossRef] [Google Scholar]
  48. Lévi, F.: Chronotherapeutics: the relevance of timing in cancer therapy. Cancer Causes Control 17, 611–621 (2006) [CrossRef] [PubMed] [Google Scholar]
  49. Lévi, F.: The circadian timing system: A coordinator of life processes. implications for the rhythmic delivery of cancer therapeutics. IEEE-EMB Magazine 27, 17–20 (2008) [Google Scholar]
  50. Lévi, F., Altinok, A., Clairambault, J., Goldbeter, A.: Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. Roy. Soc. A 366, 3575–3598 (2008) [CrossRef] [Google Scholar]
  51. Lévi, F., Karaboué, A., Gorden, L., Innominato, P.F., Saffroy, R., Giacchetti, S., Hauteville, D., Guettier, C., Adam, R., Bouchahda, M.: Cetuximab and circadian chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67(2), 339–348 (2011). DOI 10.1007/s00280-010-1327-8 . URL [CrossRef] [PubMed] [Google Scholar]
  52. Lévi, F., Okyar, A., Dulong, S., Innominato, P., Clairambault, J.: Circadian timing in cancer treatments. Annual Review of Pharmacology and Toxicology 50, 377–421 (2010) [CrossRef] [PubMed] [Google Scholar]
  53. Lévi, F., Schibler, U.: Circadian rhythms: Mechanisms and therapeutic implications. Ann. Rev. Pharmacol. Toxicol. 47, 493–528 (2007) [Google Scholar]
  54. Lewis, A.S., Overton, M.L.: Eigenvalue optimization. Acta Numerica 5, 149–190 (1996) [CrossRef] [Google Scholar]
  55. Li, X., Metzger, G., Filipski, E., Lemaigre, G., Lévi, F.: Modulation of nonprotein sulphydryl compounds rhythm with buthionine sulphoximine: relationship with oxaliplatin toxicity in mice. Arch. Toxicol. 72, 574–579 (1998) [CrossRef] [PubMed] [Google Scholar]
  56. Longley, D.B., Harkin, D.P., Johnston, P.G.: 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5), 330–338 (2003). DOI 10.1038/nrc1074 . URL [CrossRef] [PubMed] [Google Scholar]
  57. Lorenzi, T., Chisholm, R.H., Clairambault, J.: Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations. Biol Direct 11(1) (2016). DOI 10.1186/s13062-016-0143-4 . URL [Google Scholar]
  58. Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull Math Biol 77(1), 1–22 (2015). DOI 10.1007/s11538-014-0046-4 . URL [Google Scholar]
  59. Lorz, A., Lorenzi, T., Hochberg, M.E., Clairambault, J., Perthame, B.: Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Mathematical Modelling and Numerical Analysis 47(2), 377–399 (2013). DOI 10.1051/m2an/2012031 . URL [Google Scholar]
  60. Ma, L., Wagner, J., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. 102, 14,266–71 (2005) [Google Scholar]
  61. Matsuo, T., Yamaguchi, S., Mitsuia, S., Emi, A., Shimoda, F., Okamura, H.: Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255–259 (2003) [Google Scholar]
  62. McKendrick, A.: Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 54, 98–130 (1926) [Google Scholar]
  63. Montagnier, P., Spiteri, R.J., Angeles, J.: The control of linear time-periodic systems using Floquet-Lyapunov theory. International Journal of Control 77(5), 472–490 (2004). DOI 10.1080/00207170410001667477 [CrossRef] [MathSciNet] [Google Scholar]
  64. Mormont, M.C., Levi, F.: Cancer chronotherapy: principles, applications, and perspectives. Cancer 97(1), 155–169 (2003). DOI 10.1002/cncr.11040 . URL [CrossRef] [PubMed] [Google Scholar]
  65. Oguri, T., Bessho, Y., Achiwa, H., Ozasa, H., Maeno, K., Maeda, H., Sato, S., Ueda, R.: MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 6(1), 122–127 (2007). DOI 10.1158/1535-7163.MCT-06-0529 . URL [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  66. Overton, M., Womersley, R.: On minimizing the spectral radius of a nonsymmetric matrix function: optimality conditions and duality theory. SIAM Journal on Matrix Analysis and Applications 9, 473–498 (1988) [CrossRef] [MathSciNet] [Google Scholar]
  67. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics series. Birkhäuser, Boston (2007) [Google Scholar]
  68. Peters, G., Lankelma, J., Kok, R., Noordhuis, P., van Groeningen, C., van der Wilt, C. et al.: Prolonged retention of high concentrations of 5-fluorouracil in human and murine tumors as compared with plasma. Cancer Chemother. Pharmacol. 31, 269–276 (1993) [CrossRef] [PubMed] [Google Scholar]
  69. Polak, E.: Optimization: algorithms and consistent approximations, vol. 124. Springer Science & Business Media (2012) [Google Scholar]
  70. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience Publishers (1962). Translated from the Russian by K.N. Trirogoff [Google Scholar]
  71. Porsin, B.P., Formento, J.L., Filipski, E., Etienne, M.C., Francoual, M., Renée, N., Magné, N., Lévi, F., Milano, G.: Dihydropyrimidine dehydrogenase circadian rhythm in mouse liver: comparison between enzyme activity and gene expression. Eur. J. Cancer 39, 822–828 (2003) [CrossRef] [PubMed] [Google Scholar]
  72. Pouchol, C., Clairambault, J., Lorz, A., Trélat, E.: Asymptotic study and optimal control of integrodifferential systems modelling healthy and cancer cells exposed to chemotherapy (2016). In review [Google Scholar]
  73. Rees, D.C., Johnson, E., Lewinson, O.: ABC transporters: the power to change. Nat Rev Mol Cell Biol 10(3), 218–227 (2009). DOI 10.1038/nrm2646 . URL [CrossRef] [PubMed] [Google Scholar]
  74. Schättler, H., Ledzewicz, U.: Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38. Springer (2012) [Google Scholar]
  75. Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies, An Application of Geometric Methods, Interdisciplinary Applied Mathematics, vol. 42. Springer (2015) [Google Scholar]
  76. Scilab: Free open source software for numerical computation [Google Scholar]
  77. Soussi, T.: The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 910, 121–37; discussion 137–9 (2000) [CrossRef] [PubMed] [Google Scholar]
  78. Touitou, Y., Touitou, C., Bogdan, A., Reinberg, A., Auzéby, A., Becck, H., Guillet, P.: Differences between young and elderly subjects in seasonal and circadian variations of total plasmaproteins and blood volume as reflected by hemoglobin, hematocrit, and erythrocyte counts. Clinical Che 32, 801–804 (1986) [Google Scholar]
  79. Trosko, J.E.: Mechanisms of tumor promotion: possible role of inhibited intercellular communication. Eur J Cancer Clin Oncol 23(6), 599–601 (1987) [CrossRef] [PubMed] [Google Scholar]
  80. Trosko, J.E.: A conceptual integration of extra-, intra- and gap junctional- intercellular communication in the evolution of multi-cellularity and stem cells: How disrupted cell-cell communication during development can affect diseases later in life. International Journal of Stem Cell Research & Therapy 3, 021 (2016) [Google Scholar]
  81. William-Faltaos, S., Rouillard, D., Lechat, P., Bastian, G.: Cell cycle arrest and apoptosis induced by oxaliplatin (L-OHP) on four human cancer cell lines. Anticancer Res 26(3A), 2093–2099 (2006) [PubMed] [Google Scholar]
  82. William-Faltaos, S., Rouillard, D., Lechat, P., Bastian, G.: Cell cycle arrest by oxaliplatin on cancer cells. Fundam Clin Pharmacol 21(2), 165–172 (2007). DOI 10.1111/j.1472-8206.2007.00462.x . URL [CrossRef] [PubMed] [Google Scholar]
  83. Wood, P., Du-Quiton, J., You, S., Hrushesky, W.: Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index. Mol Cancer Ther 5, 2023–2033 (2006) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.