Free Access

This article has an erratum: []

Math. Model. Nat. Phenom.
Volume 11, Number 6, 2016
Page(s) 71 - 90
Published online 04 January 2017
  1. TE Adams, SJ Everse, and KG Mann. Predicting the pharmacology of thrombin inhibitors. Journal of Thrombosis and Haemostasis, 1(5):1024–1027, 2003. [CrossRef] [Google Scholar]
  2. S S Ahmad and P N Walsh. Platelet membrane-mediated coagulation protease complex assembly. Trends in cardiovascular medicine, 4(6):271–278, 1994. [CrossRef] [PubMed] [Google Scholar]
  3. S S Ahmad, R Rawala-Sheikh, B Ashby, and P N Walsh. Platelet receptor-mediated factor x activation by factor ixa. high-affinity factor ixa receptors induced by factor viii are deficient on platelets in scott syndrome. Journal of Clinical Investigation, 84(3):824, 1989. [CrossRef] [Google Scholar]
  4. S S Ahmad, F S London, and P N Walsh. The assembly of the factor x-activating complex on activated human platelets. Journal of Thrombosis and Haemostasis, 1(1):48–59, 2003. [CrossRef] [Google Scholar]
  5. M Anand, K Rajagopal, and K R Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. Journal of Theoretical Medicine, 5(3-4):183–218, 2003. ISSN 1027-3662. [CrossRef] [MathSciNet] [Google Scholar]
  6. M Anand, K Rajagopal, and K R Rajagopal. A model for the formation, growth, and lysis of clots in quiescent plasma. a comparison between the effects of antithrombin iii deficiency and protein c deficiency. Journal of Theoretical Biology, 253 (4):725–738, 2008. [CrossRef] [PubMed] [Google Scholar]
  7. F I Ataullakhanov, V I Zarnitsina, A V Pokhilko, A I Lobanov, and O L Morozova. Spatio-temporal dynamics of blood coagulation and pattern formation: a theoretical approach. International Journal of Bifurcation and Chaos, 12(09):1985– 2002, 2002a. [CrossRef] [Google Scholar]
  8. F I Ataullakhanov, V I Zarnitsina, A V Pokhilko, A I Lobanov, and O L Morozova. Spatio-temporal dynamics of blood coagulation and pattern formation: a theoretical approach. International Journal of Bifurcation and Chaos, 12(09):1985–2002, 2002b. [Google Scholar]
  9. S P Bajaj, S I Rapaport, and S F Brown. Isolation and characterization of human factor vii. activation of factor vii by factor xa. Journal of Biological Chemistry, 256(1):253–259, 1981. [Google Scholar]
  10. L Bajzar. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arteriosclerosis, thrombosis, and vascular biology, 20(12):2511–2518, 2000. [CrossRef] [PubMed] [Google Scholar]
  11. A N Balandina, A M Shibeko, D A Kireev, A A Novikova, I I Shmirev, M A Panteleev, and F I Ataullakhanov. Positive feedback loops for factor v and factor vii activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophysical journal, 101(8):1816–1824, 2011. [CrossRef] [PubMed] [Google Scholar]
  12. K A Bauer, B L Kass, H ten Cate, J J Hawiger, and R D Rosenberg. Factor ix is activated in vivo by the tissue factor mechanism. Blood, 76(4):731–736, 1990. [Google Scholar]
  13. R J Baugh, G J Broze, and S Krishnaswamy. Regulation of Extrinsic Pathway Factor Xa Formation by Tissue Factor Pathway Inhibitor. Journal of Biological Chemistry, 273(8):4378–4386, 1998. [CrossRef] [Google Scholar]
  14. T Bodnar and A Sequeira. Numerical Simulation of the Coagulation Dynamics of Blood. Computational and Mathematical Methods in Medicine, 9(2):83–104, 2008. ISSN 1748-670X. [CrossRef] [MathSciNet] [Google Scholar]
  15. T Bodnaar, A Fasano, and A Sequeira. Mathematical models for blood coagulation. In Fluid-Structure Interaction and Biomedical Applications, pages 483–569. Springer, 2014. [Google Scholar]
  16. K Brummel-Ziedins. Models for thrombin generation and risk of disease. Journal of Thrombosis and Haemostasis, 11: 212–223, 2013. [CrossRef] [Google Scholar]
  17. S D Bungay, P A Gentry, and R D Gentry. A mathematical model of lipid-mediated thrombin generation. Mathematical Medicine and Biology, 20(1):105–129, 2003. [CrossRef] [PubMed] [Google Scholar]
  18. Rolf Burghaus, Katrin Coboeken, Thomas Gaub, Lars Kuepfer, Anke Sensse, Hans-Ulrich Siegmund, Wolfgang Weiss, Wolfgang Mueck, and Joerg Lippert. Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation. PLoS One, 6(4):e17626, 2011. [CrossRef] [PubMed] [Google Scholar]
  19. S Butenas and K G Mann. Kinetics of human factor vii activation. Biochemistry, 35(6):1904–1910, 1996. [CrossRef] [PubMed] [Google Scholar]
  20. S Butenas and K G Mann. Blood coagulation. Biochemistry (Moscow), 67(1):3–12, 2002. [CrossRef] [Google Scholar]
  21. M S Chatterjee, W S Denney, H Jing, and S L Diamond. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Computational Biology, 6(9):e1000950, 2010. [CrossRef] [PubMed] [Google Scholar]
  22. S D Conte and C W De Boor. Elementary numerical analysis: an algorithmic approach. McGraw-Hill Higher Education, 1980. [Google Scholar]
  23. C M Danforth, T Orfeo, K G Mann, K E Brummel-Ziedins, and S J Everse. The impact of uncertainty in a blood coagulation model. Mathematical Medicine and Biology, 26(4):323–336, 2009. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. R De Cristofaro and V De Filippis. Interaction of the 268-282 region of glycoprotein ibalpha with the heparin-binding site of thrombin inhibits the enzyme activation of factor viii. Biochemical Journal, 373(2):593–601, 2003. [CrossRef] [Google Scholar]
  25. P De Moerloose, H R Bounameaux, and P M Mannucci. Screening test for thrombophilic patients: which tests, for which patient, by whom, when, and why? In Seminars in thrombosis and hemostasis, volume 24, pages 321–327, 1997. [CrossRef] [Google Scholar]
  26. S L Diamond. Systems biology of coagulation. Journal of Thrombosis and Haemostasis, 11(s1):224–232, 2013. [CrossRef] [Google Scholar]
  27. S L Diamond and S Anand. Inner clot diffusion and permeation during fibrinolysis. Biophysical journal, 65(6):2622, 1993. [CrossRef] [PubMed] [Google Scholar]
  28. C T Esmon, W G Owen, and C M Jackson. The Conversion of Prothrombin to Thrombin. Journal of Biological Chemistry, 249(24):7798–7807, 1974. [Google Scholar]
  29. P J Fay, T L Beattie, L M Regan, L M O Brien, and R J Kaufman. Model for the Factor VIIIa-dependent Decay of the Intrinsic Factor Xase: Role of Subunit Dissociation and Factor IXa-Catalyzed Proteolysis. Journal of Biological Chemistry, 271(11):6027–6032, 1996. [CrossRef] [Google Scholar]
  30. A L Fogelson, Y H Hussain, and K Leiderman. Blood clot formation under flow: the importance of factor xi depends strongly on platelet count. Biophysical journal, 102(1):10–18, 2012. [CrossRef] [PubMed] [Google Scholar]
  31. J H Foley, P F Cook, and M E Nesheim. Kinetics of activated thrombin-activatable fibrinolysis inhibitor (tafia)-catalyzed cleavage of c-terminal lysine residues of fibrin degradation products and removal of plasminogen-binding sites. Journal of Biological Chemistry, 286(22):19280–19286, 2011. [CrossRef] [Google Scholar]
  32. J M Freyssinet, F Toti-Orfanoudakis, C Ravanat, L Grunebaum, J Gauchy, J P Cazenave, and M L Wiesel. The catalytic role of anionic phospholipids in the activation of protein c by factor xa and expression of its anticoagulant function in human plasma. Blood Coagulation & Fibrinolysis, 2(6):691, 1991. [CrossRef] [Google Scholar]
  33. B Furie and B C Furie. Mechanisms of thrombus formation. New England Journal of Medicine, 359(9):938–949, 2008. [CrossRef] [Google Scholar]
  34. D Gailani and G J Broze. Factor xi activation in a revised model of blood coagulation. Science, 253(5022):909–912, 1991. [CrossRef] [PubMed] [Google Scholar]
  35. D Gailani, D Ho, M Sun, Q Cheng, and P N Walsh. Model for a factor IX activation complex on blood platelets : dimeric conformation of factor XIa is essential. Blood, 97(10):3117–3123, 2001. [CrossRef] [Google Scholar]
  36. A Gulati, GK Isbister, and SB Duffull. Scale reduction of a systems coagulation model with an application to modeling pharmacokinetic-pharmacodynamic data. CPT: pharmacometrics & systems pharmacology, 3(1):1–8, 2014. [Google Scholar]
  37. L M Haynes, Y C Dubief, T Orfeo, and K G Mann. Dilutional control of prothrombin activation at physiologically relevant shear rates. Biophysical journal, 100(3):765–773, 2011. [CrossRef] [PubMed] [Google Scholar]
  38. L M Haynes, Y C Dubief, and K G Mann. Membrane binding events in the initiation and propagation phases of tissue factor-initiated zymogen activation under flow. Journal of Biological Chemistry, 287(8):5225–5234, 2012. [CrossRef] [Google Scholar]
  39. M J Heeb, R Bischoff, M Courtney, and J H Griffin. Inhibition of activated protein c by recombinant alpha 1-antitrypsin variants with substitution of arginine or leucine for methionine358. Journal of Biological Chemistry, 265(4):2365–2369, 1990. [Google Scholar]
  40. H C Hemker and F I Ataullakhanov. Good mathematical practice: simulation of the hemostatic-thrombotic mechanism, a powerful tool but one that must be used with circumspection. Pathophysiology of haemostasis and thrombosis, 34(2-3): 55–57, 2005. [CrossRef] [PubMed] [Google Scholar]
  41. H C Hemker, S Kerdelo, and R M W Kremers. Is there value in kinetic modeling of thrombin generation ? No ( unless… ). Journal of Thrombosis and Haemostasis, 10:1470–1477, 2012. [CrossRef] [PubMed] [Google Scholar]
  42. D C Hill-Eubanks and P Lollar. von willebrand factor is a cofactor for thrombin-catalyzed cleavage of the factor viii light chain. Journal of Biological Chemistry, 265(29):17854–17858, 1990. [Google Scholar]
  43. M F Hockin, K C Jones, S J Everse, and K G Mann. A model for the stoichiometric regulation of blood coagulation. Journal of Biological Chemistry, 277(21):18322–18333, 2002. [CrossRef] [PubMed] [Google Scholar]
  44. R Hoffman, E J Benz, L E Silberstein, H Heslop, J Weitz, and J Anastasi. Hematology: Basic Principles and Practice, Expert Consult Premium Edition - Enhanced Online Features. Elsevier Health Sciences, 2012. ISBN 9781455740413. [Google Scholar]
  45. K C Jones and K G Mann. A Model for the Tissue Factor Pathway to Thrombin. Journal of Biological Chemistry, 269 (37):23367–23373, 1994. [Google Scholar]
  46. K Kolev, I Lerant, K Tenekejiev, and R Machovich. Regulation of fibrinolytic activity of neutrophil leukocyte elastase, plasmin, and miniplasmin by plasma protease inhibitors. Journal of Biological Chemistry, 269(25):17030–17034, 1994. [Google Scholar]
  47. Yutaka Komiyama, Anders H Pedersen, and Walter Kisiel. Proteolytic activation of human factors ix and x by recombinant human factor viia: effects of calcium, phospholipids, and tissue factor. Biochemistry, 29(40):9418–9425, 1990. [CrossRef] [PubMed] [Google Scholar]
  48. S Krishnaswamy. The interaction of human factor viia with tissue factor. Journal of Biological Chemistry, 267(33): 23696–23706, 1992. [Google Scholar]
  49. S Krishnaswamy, W R Church, M E Nesheim, and K G Mann. Activation of Human Prothrombin. Journal of Biological Chemistry, 262(7):3291–3299, 1987. [Google Scholar]
  50. S Krishnaswamy, K C Jones, and K G Mann. Prothrombinase complex assembly. kinetic mechanism of enzyme assembly on phospholipid vesicles. Journal of Biological Chemistry, 263(8):3823–3834, 1988. [Google Scholar]
  51. S Krishnaswamy, K A Field, T S Edgington, J H Morrissey, and K G Mann. Role of the Membrane Surface in the Activation of Human Coagulation Factor X. Journal of Biological Chemistry, 267(36):26110–26120, 1992. [Google Scholar]
  52. A L Kuharsky and A L Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophysical journal, 80(3):1050–1074, 2001. [CrossRef] [PubMed] [Google Scholar]
  53. D E LaCroix and M Anand. A model for the formation, growth, and dissolution of clots in vitro. effect of the intrinsic pathway on antithrombin iii deficiency and protein c deficiency. International journal of advances in engineering sciences and applied mathematics, 3(1-4):93–105, 2011. [CrossRef] [MathSciNet] [Google Scholar]
  54. J H Lawson, S Butenas, and N Ribarik. Complex-dependent Inhibition of Factor VIIa by Antithrombin III and Heparin. Journal of Biological Chemistry, 268(2):767–770, 1993. [Google Scholar]
  55. K Leiderman and A Fogelson. An overview of mathematical modeling of thrombus formation under flow. Thrombosis Research, 133, Suppl(0):S12 - S14, 2014. ISSN 0049-3848. [CrossRef] [PubMed] [Google Scholar]
  56. R J Leipold, T A Bozarth, A L Racanelli, and I B Dicker. Mathematical Model of Serine Protease Inhibition in the Tissue Factor Pathway to Thrombin. Journal of Biological Chemistry, 270(43):25383–25387, 1995. [CrossRef] [Google Scholar]
  57. K Lo, W S Denney, and S L Diamond. Stochastic modeling of blood coagulation initiation. Pathophysiology of haemostasis and thrombosis, 34(2-3):80–90, 2005. [CrossRef] [PubMed] [Google Scholar]
  58. P Lollar, G J Knutson, and D N Fass. Activation of porcine factor viii: C by thrombin and factor xa. Biochemistry, 24 (27):8056–8064, 1985. [CrossRef] [PubMed] [Google Scholar]
  59. C Longstaff and C Thelwell. Understanding the enzymology of fibrinolysis and improving thrombolytic therapy. FEBS letters, 579(15):3303–3309, 2005. [CrossRef] [PubMed] [Google Scholar]
  60. D Luan, M Zai, and J D Varner. Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies. PLoS Computational Biology, 3(7):e142, 2007. [CrossRef] [PubMed] [Google Scholar]
  61. D Luan, F Szlam, K A Tanaka, P S Barie, and J D Varner. Ensembles of uncertain mathematical models can identify network response to therapeutic interventions. Molecular Biosystems, 6:2272–2286, 2010. [CrossRef] [PubMed] [Google Scholar]
  62. E L Madison, G S Coombs, and D R Corey. Substrate specificity of tissue type plasminogen activator characterization of the fibrin independent specificity of t-pa for plasminogen. Journal of Biological Chemistry, 270(13):7558–7562, 1995. [CrossRef] [Google Scholar]
  63. K G Mann. Thrombin formation. CHEST Journal, 124(3_suppl):4S–10S, 2003. [CrossRef] [Google Scholar]
  64. K G Mann. Is there value in kinetic modeling of thrombin generation? yes. Journal of Thrombosis and Haemostasis, 10 (8):1463–1469, 2012. [CrossRef] [Google Scholar]
  65. K G Mann, M E Nesheim, W R Church, P Haley, and S Krishnaswamy. Surface-dependent reactions of the vitamin k-dependent enzyme complexes. Blood, 76(1):1–16, 1990. [Google Scholar]
  66. K G Mann, K Brummel-Ziedins, T Orfeo, and S Butenas. Models of blood coagulation. Blood Cells, Molecules, and Diseases, 36(2):108–117, 2006. [CrossRef] [Google Scholar]
  67. D D Monkovic and P B Tracy. Activation of Human Factor V by Factor Xa and Thrombin. Biochemistry, 29(5):1118–1128, 1990a. [CrossRef] [Google Scholar]
  68. D D Monkovic and P B Tracy. Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin. Journal of Biological Chemistry, 265(28):17132–17140, 1990b. [Google Scholar]
  69. D M Monroe, M Hoffman, and H R Roberts. Platelets and thrombin generation. Arteriosclerosis, thrombosis, and vascular biology, 22(9):1381–1389, 2002. [CrossRef] [PubMed] [Google Scholar]
  70. P P Naidu and M Anand. Importance of viiia inactivation in a mathematical model for the formation, growth, and lysis of clots. Mathematical Modelling of Natural Phenomena, 9(06):17–33, 2014. [Google Scholar]
  71. P F Neuenschwander and J Jesty. A Comparison of Phospholipid and Platelets in the Activation of Human Factor VIII by Thrombin and Factor Xa, and in the Activation of Factor X. Blood, 72(5):1761–1770, 1988. [Google Scholar]
  72. P F Neuenschwander and J Jesty. Thrombin-activated and factor xa-activated human factor viii: differences in cofactor activity and decay rate. Archives of biochemistry and biophysics, 296(2):426–434, 1992. [CrossRef] [PubMed] [Google Scholar]
  73. D P O'Brien, G Kemball-Cook, A M Hutchinson, DMA Martin, D J D Johnson, P G H Byfield, O Takamiya, E G D Tuddenham, and J H McVey. Surface plasmon resonance studies of the interaction between factor vii and tissue factor. demonstration of defective tissue factor binding in a variant fvii molecule (fvii-r79q). Biochemistry, 33(47):14162–14169, 1994. [CrossRef] [PubMed] [Google Scholar]
  74. L M O'Brien, M Mastri, and P J Fay. Regulation of factor viiia by human activated protein c and protein s: inactivation of cofactor in the intrinsic factor xase. Blood, 95(5):1714–1720, 2000. [Google Scholar]
  75. T Orfeo and K G Mann. Mathematical and biological models of blood coagulation. Journal of Thrombosis and Haemostasis, 3(11):2397–2398, 2005. [CrossRef] [Google Scholar]
  76. M A Panteleev, M V Ovanesov, D A Kireev, A M Shibeko, E I Sinauridze, N M Ananyeva, A A Butylin, E L Saenko, and F I Ataullakhanov. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein c pathways, respectively. Biophysical Journal, 90(5):1489–1500, 2006. [Google Scholar]
  77. M A Panteleev, N M Ananyeva, F I Ataullakhanov, and E L Saenko. Mathematical models of blood coagulation and platelet adhesion: clinical applications. Current pharmaceutical design, 13(14):1457–1467, 2007. [CrossRef] [PubMed] [Google Scholar]
  78. R A Pixley, M Schapira, and R W Colman. The regulation of human factor xiia by plasma proteinase inhibitors. Journal of Biological Chemistry, 260(3):1723–1729, 1985. [Google Scholar]
  79. S I Rapaport. The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thrombosis and haemostasis, 66(1):6–15, 1991. [PubMed] [Google Scholar]
  80. S Raut, L Weller, and T W Barrowcliffe. Phospholipid binding of factor viii in different therapeutic concentrates. British journal of haematology, 107(2):323–329, 1999. [CrossRef] [PubMed] [Google Scholar]
  81. R Rawala-Sheikh, S S Ahmad, B Ashby, and P N Walsh. Kinetics of Coagulation Factor X Activation by Platelet-Bound Factor IXa. Biochemistry, 29(10):2606–2611, 1990. [CrossRef] [PubMed] [Google Scholar]
  82. D C Rijken and H R Lijnen. New insights into the molecular mechanisms of the fibrinolytic system. Journal of Thrombosis and Haemostasis, 7(1):4–13, 2009. [CrossRef] [Google Scholar]
  83. R D Rosenberg and J S Rosenberg. Natural anticoagulant mechanisms. Journal of Clinical Investigation, 74(1):1, 1984. [CrossRef] [Google Scholar]
  84. J Rosing, J L Van Rijn, E M Bevers, G Van Dieijen, P Comfurius, and R F Zwaal. The role of activated human platelets in prothrombin and factor x activation. Blood, 65(2), 1985. [Google Scholar]
  85. C F Scott, M Schapira, H L James, A B Cohen, and R W Colman. Inactivation of factor xia by plasma protease inhibitors: Predominant role of a1-protease inhibitor and protective effect of high molecular weight kininogen. Journal of Clinical Investigation, 69(4):844, 1982. [CrossRef] [Google Scholar]
  86. A M Shibeko, E S Lobanova, M A Panteleev, and F I Ataullakhanov. Blood flow controls coagulation onset via the positive feedback of factor vii activation by factor xa. BMC systems biology, 4(1):1, 2010. [CrossRef] [PubMed] [Google Scholar]
  87. J Shobe, C D Dickinson, T S Edgington, and W Ruf. Macromolecular Substrate Affinity for the Tissue Factor-Factor VIIa Complex Is Independent of Scissile Bond Docking. Journal of Biological Chemistry, 274(34):24171–24175, 1999. [CrossRef] [Google Scholar]
  88. M Silverberg and A P Kaplan. Enzymatic activities of activated and zymogen forms of human hageman factor (factor xii). Blood, 60(1):64–70, 1982. [Google Scholar]
  89. S Solymoss, M M Tucker, and P B Tracy. Kinetics of inactivation of membrane-bound factor va by activated protein c. protein s modulates factor xa protection. Journal of Biological Chemistry, 263(29):14884–14890, 1988. [Google Scholar]
  90. H Soons, T Janssen-Claessen, G Tans, and H C Hemker. Inhibition of factor xia by antithrombin iii. Biochemistry, 26 (15):4624–4629, 1987. [CrossRef] [PubMed] [Google Scholar]
  91. Y Sun and D Gailani. Identification of a factor ix binding site on the third apple domain of activated factor xi. Journal of Biological Chemistry, 271(46):29023–29028, 1996. [CrossRef] [Google Scholar]
  92. M Susree and M Anand. A mathematical model for in vitro coagulation of blood: Role of platelet count & inhibition. Sadhana, Accepted, 2016. [Google Scholar]
  93. N A Swords and K G Mann. The assembly of the prothrombinase complex on adherent platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 13(11):1602–1612, 1993. [CrossRef] [Google Scholar]
  94. D L Tankersley and J S Finlayson. Kinetics of activation and autoactivation of human factor xii. Biochemistry, 23(2): 273–279, 1984. [CrossRef] [PubMed] [Google Scholar]
  95. M Tomaiuolo, T J Stalker, J D Welsh, S L Diamond, T Sinno, and L F Brass. A systems approach to hemostasis: 2. computational analysis of molecular transport in the thrombus microenvironment. Blood, 124(11):1816–1823, 2014. [CrossRef] [Google Scholar]
  96. P B Tracy and K G Mann. Prothrombinase complex assembly on the platelet surface is mediated through the 74,000-dalton component of factor va. Proceedings of the National Academy of Sciences, 80(8):2380–2384, 1983. [CrossRef] [Google Scholar]
  97. M Tsiang, L R Paborsky, W X Li, A K Jain, C T Mao, K E Dunn, D W Lee, S Y Matsumura, M D Matteucci, S E Coutre, and L L Leung. Protein engineering thrombin for optimal specificity and potency of anticoagulant activity in vivo. Biochemistry, 35(51):16449–16457, 1996. [CrossRef] [PubMed] [Google Scholar]
  98. F Van der Graaf, J A Koedam, and B N Bouma. Inactivation of kallikrein in human plasma. Journal of Clinical Investigation, 71(1):149, 1983. [CrossRef] [Google Scholar]
  99. G van Dieijen, J L Van Rijn, J W Govers-Riemslag, H C Hemker, and J Rosing. Assembly of the intrinsic factor x activating complex-interactions between factor ixa, factor viiia and phospholipid. Thrombosis and haemostasis, 53(3):396–400, 1985. [PubMed] [Google Scholar]
  100. C van't Veer and K G Mann. Regulation of tissue factor initiated thrombin generation by the stoichiometric inhibitors tissue factor pathway inhibitor, antithrombin-iii, and heparin cofactor-ii. Journal of Biological Chemistry, 272(7):4367–4377, 1997. [CrossRef] [Google Scholar]
  101. F Varfaj, J Neuberg, P V Jenkins, H Wakabayashi, and P J Fay. Role of p1 residues arg336 and arg562 in the activated- protein-c-catalysed inactivation of factor viiia. Biochemical Journal, 396(2):355–362, 2006. [CrossRef] [Google Scholar]
  102. P N Walsh, H Bradford, D Sinha, J R Piperno, and G P Tuszynski. Kinetics of the factor xia catalyzed activation of human blood coagulation factor ix. Journal of Clinical Investigation, 73(5):1392, 1984. [CrossRef] [Google Scholar]
  103. Peter N Walsh. Platelet coagulation-protein interactions. In Seminars in thrombosis and hemostasis, volume 30, pages 461–471. Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA., 2004. [CrossRef] [PubMed] [Google Scholar]
  104. E M Wiebe, A R Stafford, C James, J I Weitz, and J C Fredenburgh. Mechanism of Catalysis of Inhibition of Factor IXa by Antithrombin in the Presence of Heparin or Pentasaccharide. Journal of Biological Chemistry, 278(37):35767–35774, 2003. [CrossRef] [Google Scholar]
  105. G M Willems, T Lindhout, W Th Hermens, and H C Hernkers. Simulation Model for Thrombin Generation in Plasma. Haemostasis, 21:197–207, 1991. [PubMed] [Google Scholar]
  106. Z Xu, O Kim, M Kamocka, E D Rosen, and M Alber. Multiscale models of thrombogenesis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 4(3):237–246, 2012. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  107. X Zhou, DRH Huntjens, and RAHJ Gilissen. A systems pharmacology model for predicting effects of factor xa inhibitors in healthy subjects: Assessment of pharmacokinetics and binding kinetics. CPT: pharmacometrics & systems pharmacology, 4(11):650–659, 2015. [Google Scholar]
  108. M Zur and Y Nemerson. Kinetics of Factor IX Activation via the Extrinsic Pathway. Journal of Biological Chemistry, 255(12):5703–5707, 1979. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.