Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 6, 2016
Pharmacokinetics-Pharmacodynamics
Page(s) 91 - 101
DOI https://doi.org/10.1051/mmnp/201611606
Published online 04 January 2017
  1. H.H. Versteeg, J.W. Heemskerk, M. Levi, P.H. Reitsma New fundamentals in hemostasis, Physiol Rev. 93 (2013) 327–358. [CrossRef] [PubMed] [Google Scholar]
  2. J.C. Doery, J. Hirsh, I. Cooper, Energy metabolism in human platelets: interrelationship between glycolysis and oxidative metabolism., Blood. 36 (1970) 159–68. [Google Scholar]
  3. S. Ravi, B. Chacko, H. Sawada, P.A. Kramer, M.S. Johnson, G.A. Benavides, et al., Metabolic plasticity in resting and thrombin activated platelets., PLoS One. 10 (2015) e0123597. doi:10.1371/journal.pone.0123597. [CrossRef] [PubMed] [Google Scholar]
  4. S. Karpatkin, Studies on human platelet glycolysis. Effect of glucose, cyanide, insulin, citrate, and agglutination and contraction on platelet glycolysis., J. Clin. Invest. 46 (1967) 409–17. doi:10.1172/JCI105542. [CrossRef] [PubMed] [Google Scholar]
  5. J.W. Akkerman, H. Holmsen, Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion., Blood. 57 (1981) 956–66. [Google Scholar]
  6. V. Vasta, E. Meacci, M. Farnararo, P. Bruni, Glutamine Utilization in Resting and Stimulated Platelets, J. Biochem. 114 (1993) 163–166. [PubMed] [Google Scholar]
  7. M. Guppy, L. Abas, C. Neylon, M.E. Whisson, S. Whitham, D.W. Pethick, et al., Fuel Choices by Human Platelets in Human Plasma, Eur. J. Biochem. 244 (1997) 161–167. doi:10.1111/j.1432-1033.1997.00161.x. [CrossRef] [PubMed] [Google Scholar]
  8. M. Guppy, M.E. Whisson, R. Sabaratnam, P. Withers, K. Brand, Alternative Fuels for Platelet Storage: A Metabolic Study, Vox Sang. 59 (1990) 146–152. doi:10.1111/j.1423-0410.1990.tb00849.x. [CrossRef] [PubMed] [Google Scholar]
  9. M.H. Fukami, H. Holmsen, L. Salganicoff, Adenine nucleotide metabolism of blood platelets IX. Time course of secretion and changes in energy metabolism in thrombin-treated platelets, Biochim. Biophys. Acta - Gen. Subj. 444 (1976) 633–643. doi:10.1016/0304-4165(76)90310-X. [CrossRef] [Google Scholar]
  10. J.-W.N. Akkerman, G. Gorter, Relation between energy production and adenine nucleotide metabolism in human blood platelets, Biochim. Biophys. Acta - Bioenerg. 590 (1980) 107–116. doi:10.1016/0005-2728(80)90150-4. [CrossRef] [Google Scholar]
  11. S. Murphy, F.H. Gardner, Platelet storage at 22 degrees C; metabolic, morphologic, and functional studies., J. Clin. Invest. 50 (1971) 370–7. doi:10.1172/JCI106504. [CrossRef] [PubMed] [Google Scholar]
  12. J.W. Akkerman, G. Rijksen, G. Gorter, G.E. Staal, Platelet functions and energy metabolism in a patient with hexokinase deficiency., Blood. 63 (1984) 147–153. [Google Scholar]
  13. J.W.N. Akkerman, G. Gorter, J.J. Sixma, Regulation of glycolytic flux in human platelets relation between energy production by glyco(geno)lysis and energy consumption, Biochim. Biophys. Acta - Gen. Subj. 541 (1978) 241–250. doi:10.1016/0304-4165(78)90397-5. [CrossRef] [Google Scholar]
  14. R.B. Scott, Activation of glycogen phosphorylase in blood platelets., Blood. 30 (1967) 321–330. [Google Scholar]
  15. P.W. Majerus, M.B. Smith, G.H. Clamon, Lipid metabolism in human platelets. I. Evidence for a complete fatty acid synthesizing system., J. Clin. Invest. 48 (1969) 156–164. doi:10.1172/JCI105964. [CrossRef] [PubMed] [Google Scholar]
  16. P. Cohen, A. Derksen, H. Van den Bosch, Pathways of fatty acid metabolism in human platelets., J. Clin. Invest. 49 (1970) 128–139. doi:10.1172/JCI106211. [CrossRef] [PubMed] [Google Scholar]
  17. A. Thomas, S. Rahmanian, A. Bordbar, B.Ø. Palsson, N. Jamshidi, Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance., Sci. Rep. 4 (2014) 3925. doi:10.1038/srep03925. [PubMed] [Google Scholar]
  18. J.W.N. Akkerman, G. Gorter, L. Schrama, H. Holmsen, A novel technique for rapid determination of energy consumption in platelets. Demonstration of different energy consumption associated with three secretory responses, Biochem. J. 210 (1983) 145–155. doi:10.1042/bj2100145. [CrossRef] [PubMed] [Google Scholar]
  19. M.G. Markakis, G.D. Mitsis, V.Z. Marmarelis, Computational study of an augmented minimal model for glycaemia control., Conf. Proc. … Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2008 (2008) 5445–8. doi:10.1109/IEMBS.2008.4650446. [Google Scholar]
  20. J.D. Orth, I. Thiele, B.Ø. Palsson, What is flux balance analysis?, Nat. Biotechnol. 28 (2010) 245–8. doi:10.1038/nbt.1614. [CrossRef] [PubMed] [Google Scholar]
  21. J.M. Lee, E.P. Gianchandani, J.A. Papin, Flux balance analysis in the era of metabolomics., Brief. Bioinform. 7 (2006) 140–50. doi:10.1093/bib/bbl007. [CrossRef] [PubMed] [Google Scholar]
  22. N. Jamshidi, B.Ø. Palsson, Formulating genome-scale kinetic models in the post-genome era., Mol. Syst. Biol. 4 (2008) 171. doi:10.1038/msb.2008.8. [CrossRef] [PubMed] [Google Scholar]
  23. A.M. Feist, M.J. Herrgård, I. Thiele, J.L. Reed, B.Ø. Palsson, Reconstruction of biochemical networks in microorganisms., Nat. Rev. Microbiol. 7 (2009) 129–43. doi:10.1038/nrmicro1949. [CrossRef] [PubMed] [Google Scholar]
  24. J.M. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, et al., The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways, Blood. 120 (2012) e73–e82. [CrossRef] [Google Scholar]
  25. S. Schaller, S. Willmann, J. Lippert, L. Schaupp, T.R. Pieber, A. Schuppert, et al., A Generic Integrated Physiologically based Whole-body Model of the Glucose-Insulin-Glucagon Regulatory System., CPT Pharmacometrics Syst. Pharmacol. 2 (2013) e65. doi:10.1038/psp.2013.40. [CrossRef] [Google Scholar]
  26. P. Mendes, S. Hoops, S. Sahle, R. Gauges, J. Dada, U. Kummer, Computational modeling of biochemical networks using COPASI, Methods Mol.Biol. 500 (2009) 17–59. [CrossRef] [Google Scholar]
  27. T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford university press, Oxford, 1996. [Google Scholar]
  28. I.A. Ferreira, A.I.M. Mocking, R.T. Urbanus, S. Varlack, M. Wnuk, J.-W.N. Akkerman, Glucose uptake via glucose transporter 3 by human platelets is regulated by protein kinase B., J. Biol. Chem. 280 (2005) 32625–33. doi:10.1074/jbc.M507221200. [CrossRef] [PubMed] [Google Scholar]
  29. A. Makhorin, GNU linear programming kit, Moscow Aviat. Inst. (2001). [Google Scholar]
  30. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, et al., COPASI–a COmplex PAthway SImulator, Bioinformatics. 22 (2006) 3067–3074. [CrossRef] [PubMed] [Google Scholar]
  31. J.W.N. Akkerman, H. Holmsen, M. Loughnane, Simultaneous measurement of aggregation, secretion, oxygen uptake, proton production, and intracellular metabolites in the same platelet suspension, Anal. Biochem. 97 (1979) 387–393. doi:10.1016/0003-2697(79)90090-3. [CrossRef] [PubMed] [Google Scholar]
  32. J.C.G. Doery, J. Hirsh, G.C. de Gruchy, Platelet Glycolytic Enzymes: Effect of Cellular Disruption Procedures on Activity, Br. J. Haematol. 19 (1970) 145–157. doi:10.1111/j.1365-2141.1970.tb01613.x. [CrossRef] [PubMed] [Google Scholar]
  33. J.T. Sorensen, A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes, (1985). http://dspace.mit.edu/handle/1721.1/15234. [Google Scholar]
  34. N. Borregaard, T. Herlin, Energy metabolism of human neutrophils during phagocytosis., J. Clin. Invest. 70 (1982) 550–7. [CrossRef] [PubMed] [Google Scholar]
  35. R.H. Unger, A.M. Eisentraut, L.L. Madison, The effects of total starvation upon the levels of circulating glucagon and insulin in man., J. Clin. Invest. 42 (1963) 1031–9. doi:10.1172/JCI104788. [CrossRef] [PubMed] [Google Scholar]
  36. A. Saltelli, M. Ratto, S. Tarantola, F. Campolongo, Sensitivity analysis for chemical models, Chem.Rev. 105 (2005) 2811–2828. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.