Growth phenomena
Free Access
Review
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Growth phenomena
Article Number 7
Number of page(s) 23
DOI https://doi.org/10.1051/mmnp/2019021
Published online 17 February 2020
  1. D. Ambrose, The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech. 16 (2014) 105–143. [CrossRef] [Google Scholar]
  2. D.M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension. Eur. J. Appl. Math. 15 (2004) 597–607. [Google Scholar]
  3. C.-H. Arthur Cheng, R. Granero-Belinchón and S. Shkoller, Well-posedness of the Muskat problem with H2 initial data. Adv. Math. 286 (2016) 32–104. [CrossRef] [Google Scholar]
  4. C.-H. Arthur Cheng, R. Granero-Belinchón, S. Shkoller and J. Wilkening, Rigorous asymptotic models of water waves. Water Waves (2019) 1–60. [Google Scholar]
  5. H. Bae and R. Granero-Belinchón, Global existence for some transport equations with nonlocal velocity. Adv. Math. 269 (2015) 197–219. [CrossRef] [Google Scholar]
  6. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. In Vol. 343. Springer Science & Business Media, Switzerland (2011). [CrossRef] [Google Scholar]
  7. J. Bear, Dynamics of Fluids in Porous Media. Dover Publications, USA (1988). [Google Scholar]
  8. L.C Berselli, Vanishing viscosity limit and long-time behavior for 2d quasi-geostrophic equations. Indiana U. Math. J. 51 (2002) 905–930. [CrossRef] [Google Scholar]
  9. L.C. Berselli, D. Córdoba and R. Granero-Belinchón, Local solvability and turning for the inhomogeneous Muskat problem. Interfaces Free Bound. 16 (2014) 175–213. [CrossRef] [Google Scholar]
  10. O.V. Besov, Investigation of a class of function spaces in connection with imbedding and extension theorems. Trudy Matematicheskogo Instituta imeni VA Steklova 60 (1961) 42–81. [Google Scholar]
  11. S.E. Buckley and M.C. Leverett, Mechanism of fluid displacement in sands. Trans. Aime 146 (1941) 107–116. [CrossRef] [Google Scholar]
  12. S. Cameron, Global well-posedness for the 2d Muskat problem with slope less than 1. Anal. PDE 12 (2019) 997–1022. [CrossRef] [Google Scholar]
  13. A. Castro, D. Cordoba, C. Fefferman, F. Gancedo and M. Lopez-Fernandez, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175 (2012) 909–948. [Google Scholar]
  14. A. Castro, D. Cordoba, C. Fefferman and F. Gancedo, Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208 (2013) 805–909. [Google Scholar]
  15. A. Castro, D. Córdoba and D. Faraco, Mixing solutions for the Muskat problem. Preprint arXiv:1605.04822 (2016). [Google Scholar]
  16. A. Castro, D. Córdoba, C. Fefferman and F. Gancedo, Splash singularities for the one-phase Muskat problem in stable regimes. Arch. Ration. Mech. Anal. 222 (2016) 213–243. [Google Scholar]
  17. Á. Castro, D. Faraco and F. Mengual, Degraded mixing solutions for the Muskat problem. Preprint arXiv:1805.12050 (2018). [Google Scholar]
  18. M. Cerminara and A. Fasano, Modelling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks. J. Volcanol. Geotherm. Res. 233 (2012) 37–54. [CrossRef] [Google Scholar]
  19. D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65 (2012) 1037–1066. [Google Scholar]
  20. H.A. Chang-Lara and N. Guillen, From the free boundary condition for hele-shaw to a fractional parabolic equation. Preprint arXiv:1605.07591 (2016). [Google Scholar]
  21. X. Chen, The hele-shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Anal. 123 (1993) 117–151. [Google Scholar]
  22. P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6 (1993) 393–415. [Google Scholar]
  23. P. Constantin, A.J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7 (1994) 1495. [Google Scholar]
  24. P. Constantin, A.J. Majda and E.G. Tabak, Singular front formation in a model for quasi-geostrophic flow. Phys. Fluids 6 (1994) 9. [CrossRef] [Google Scholar]
  25. P. Constantin, D. Cordoba, F. Gancedo and R.M. Strain. On the global existence for the Muskat problem. J. Eur. Math. Soc. 15 (2013) 201–227. [CrossRef] [Google Scholar]
  26. P. Constantin, D. Cordoba, F. Gancedo, L. Rodríguez-Piazza and R.M. Strain, On the Muskat problem: global in time results in2d and 3d. Am. J. Math. 138 (2016) 6. [CrossRef] [Google Scholar]
  27. P. Constantin, F. Gancedo, R. Shvydkoy and V. Vicol, Global regularity for 2d Muskat equations with finite slope. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 34 (2016) 1041–1074. [CrossRef] [Google Scholar]
  28. A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249 (2004) 511–528. [CrossRef] [Google Scholar]
  29. D. Córdoba and F. Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273 (2007) 445–471. [CrossRef] [Google Scholar]
  30. D. Córdoba and F. Gancedo, A maximum principle for the Muskat problem for fluids with different densities. Commun. Math. Phys. 286 (2009) 681–696. [CrossRef] [Google Scholar]
  31. D. Córdoba and F. Gancedo, Absence of squirt singularities for the multi-phase Muskat problem. Commun. Math. Phys. 299 (2010) 561–575. [CrossRef] [Google Scholar]
  32. D. Cordoba and T. Pernas-Castaño, Non-splat singularity for the one-phase Muskat problem. Trans. Am. Math. Soc. 369 (2017) 711–754. [Google Scholar]
  33. D. Cordoba and O. Lazar, Global well-posedness for the 2d stable Muskat problem in H3∕2. Preprint arXiv:1803.07528 (2018). [Google Scholar]
  34. A. Cordoba, D. Cordoba and F. Gancedo, The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces. Proc. Natl. Acad. Sci. 106 (2009) 10955–10959. [CrossRef] [Google Scholar]
  35. A. Cordoba, D. Córdoba and F. Gancedo, Interface evolution: the Hele-Shaw and Muskat problems. Ann. Math. 173 (2011) 477–542. [Google Scholar]
  36. A. Córdoba, D. Córdoba and F. Gancedo, Porous media: the Muskat problem in three dimensions. Anal. PDE 6 (2013) 447–497. [CrossRef] [Google Scholar]
  37. D. Córdoba, R. Granero-Belinchón and R. Orive, On the confined Muskat problem: differences with the deep water regime. Commun. Math. Sci. 12 (2014) 423–455. [Google Scholar]
  38. D. Córdoba, J. Gómez-Serrano and A. Zlatoš, A note on stability shifting for the Muskat problem. Phil. Trans. R. Soc. A 373 (2015) 20140278. [CrossRef] [Google Scholar]
  39. D. Córdoba, J. Gómez-Serrano and A. Zlatoš, A note on stability shifting for the Muskat problem ii: from stable to unstable and back to stable. Anal. PDE 10 (2017) 367–378. [CrossRef] [Google Scholar]
  40. D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20 (2006) 829–930. [CrossRef] [Google Scholar]
  41. D. Coutand and S. Shkoller, On the impossibility of finite-time splash singularities for vortex sheets. Arch. Ration. Mech. Anal. 221 (2016) 987–1033. [Google Scholar]
  42. H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et application. Victor Dalmont, Paris (1856). [Google Scholar]
  43. L. Dawson, H. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations. Proc. Am. Math. Soc. 136 (2008) 2081–2090. [Google Scholar]
  44. C.M. Elliott and J.R. Ockendon, Vol. 59 of Weak and Variational Methods for Moving Boundary Problems. Pitman Publishing, London (1982). [Google Scholar]
  45. J. Escherand B.-V. Matioc, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Anwend. 30 (2011) 193–218. [Google Scholar]
  46. J. Escher and G. Simonett, Classical solutions for Hele–Shaw models with surface tension. Adv. Differ. Equ. 2 (1997) 619–642. [Google Scholar]
  47. J. Escherand G. Simonett, A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143 (1998) 267–292. [Google Scholar]
  48. J. Escher, A.-V. Matioc and B.-V. Matioc, A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity 25 (2012) 73–92. [Google Scholar]
  49. J. Escher, B.-V. Matioc and C. Walker, The domain of parabolicity for the Muskat problem. Indiana Univ. Math. J. 67 (2018) 679–737. [CrossRef] [Google Scholar]
  50. C. Fefferman, A.D. Ionescu, V. Lie, On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165 (2016) 417–462. [CrossRef] [Google Scholar]
  51. C. Förster and L. Székelyhidi Jr. Piecewise constant subsolutions for the Muskat problem. Commun. Math. Phys. 363 (2018) 1051–1080. [CrossRef] [Google Scholar]
  52. S. Friedlander and V. Vicol, Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 28 (2011) 283–301. [CrossRef] [Google Scholar]
  53. S. Friedlander and V. Vicol, On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations. Nonlinearity 24 (2011) 3019. [Google Scholar]
  54. S. Friedlander, W. Rusin and V. Vicol, On the supercritically diffusive magnetogeostrophic equations. Nonlinearity 25 (2012) 3071. [Google Scholar]
  55. S. Friedlander, W. Rusin, V. Vicol and A.I. Nazarov, The magneto-geostrophic equations: a survey. Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations. American Mathematical Society, Providence, USA (2014). [Google Scholar]
  56. A. Friedman, Free boundary problems arising in tumor models. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9 (2004). [Google Scholar]
  57. F. Gancedo, Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217 (2008) 2569–2598. [CrossRef] [Google Scholar]
  58. F. Gancedo and R.M. Strain, Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem. Proc. Natl. Acad. Sci. 111 (2014) 635–639. [CrossRef] [Google Scholar]
  59. F. Gancedo, E. Garcia-Juarez, N. Patel and R.M. Strain, On the muskat problem with viscosity jump: Global in time results. Adv. Math. 345 (2019) 552–597. [CrossRef] [Google Scholar]
  60. J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof. Nonlinearity 27 (2014) 1471–1498. [Google Scholar]
  61. R. Granero-Belinchón. Global existence for the confined Muskat problem. SIAM J. Math. Anal. 46 (2014) 1651–1680. [CrossRef] [Google Scholar]
  62. R. Granero-Belinchón and S. Shkoller, Well-posedness and decay to equilibrium for the muskat problem with discontinuouspermeability (2016). Trans. Amer. Math. Soc. 372 (2019) 2255–2286. [CrossRef] [Google Scholar]
  63. R. Granero-Belinchón and S. Scrobogna, Asymptotic models for free boundary flow in porous media, Phys. D: Nonlinear Phenom. 392 (2019) 1–16. [CrossRef] [Google Scholar]
  64. R. Granero-Belinchón, The inhomogeneous Muskat problem. Ph.D thesis, University of Cantabria, Spain (2013). [Google Scholar]
  65. S.M. Hassanizadeh and W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13 (1990) 169–186. [Google Scholar]
  66. H.S. Hele-Shaw, The flow of water. Nature 58 (1898) 34–36. [Google Scholar]
  67. H.S. Hele-Shaw, On the motion of a viscous fluid between two parallel plates. Trans. Roy. Inst. Nav. Archit. 40 (1898) 218. [Google Scholar]
  68. U. Hornung, Vol. 6 of Homogenization and Porous Media. Springer Verlag, New York (1997). [CrossRef] [Google Scholar]
  69. A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167 (2007) 445–453. [Google Scholar]
  70. O. Lazar, Global existence for the critical dissipative surface quasi-geostrophic equation. Commun. Math. Phys. 322 (2013) 73–93. [CrossRef] [Google Scholar]
  71. P.G. Lemarié-Rieusset, The Navier–Stokes problem in the 21st century. Chapman and Hall/, Boca Raton (2016). [Google Scholar]
  72. A.J. Majda and E.G. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Phys. D: Nonlin. Phenom. 98 (1996) 515–522. [CrossRef] [Google Scholar]
  73. A.J. Majda and A.L. Bertozzi, Vorticity and incompressible flow. In Vol. 27. Cambridge University Press, Cambridge (2002). [Google Scholar]
  74. B.-V. Matioc, The muskat problem in 2d: equivalence of formulations, well-posedness, and regularity results. Anal. PDE 12 (2018) 281–332. [CrossRef] [Google Scholar]
  75. B.-V. Matioc, Viscous displacement in porous media: the Muskat problem in 2D. Trans. Am. Math. Soc. 370 (2018) 7511–7556. [Google Scholar]
  76. B.-V. Matioc, Well-posedness and stability results for some periodic Muskat problems. Preprint arXiv:1804.10403 (2018). [Google Scholar]
  77. A.-V. Matioc and B.-V. Matioc, Well-posedness and stability results for a quasilinear periodic muskat problem. J. Differ. Equ. 266 (2019) 5500–5531. [Google Scholar]
  78. H.K. Moffatt and D.E. Loper, The magnetostrophic rise of a buoyant parcel in the earth’s core. Geophys. J. Int. 117 (1994) 394–402. [Google Scholar]
  79. M. Muskat, Two fluid systems in porous media. the encroachment of water into an oil sand. Physics 5 (1934) 250–264. [Google Scholar]
  80. M. Muskat, The flow of fluids through porous media. J. Appl. Phys. 8 (1937) 274–282. [Google Scholar]
  81. M. Muskat, The flow of homogeneous fluids through porous media. Soil Sci. 46 (1938) 169. [Google Scholar]
  82. D.A. Nield and A. Bejan, Convection in Porous Media. Springer Verlag, New York (2006). [Google Scholar]
  83. F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach. Commun. Pure Appl. Math. 52 (1999) 873–915. [Google Scholar]
  84. F. Otto, Evolution of microstructure: an example, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin (2001) 501–522. [CrossRef] [Google Scholar]
  85. N. Patel and R.M. Strain, Large time decay estimates for the Muskat equation. Commun. Part. Differ. Equ. 42 (2017) 977–999. [CrossRef] [Google Scholar]
  86. T. Pernas-Castaño, Local-existence for the inhomogeneous Muskat problem. Nonlinearity 30 (2017) 2063. [Google Scholar]
  87. J. Pruessand G. Simonett, On the Muskat flow. Evol. Equ. Control Theory 5 (2016) 631–645. [CrossRef] [Google Scholar]
  88. L. Rayleigh, On the instability of jets. Proc. London Math. Soc. s1-10 (1878) 4–13. [CrossRef] [MathSciNet] [Google Scholar]
  89. J. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation. Comm. Pure Appl. Math. 58 (2005) 821–866. [CrossRef] [Google Scholar]
  90. T. Runst and W. Sickel, Vol. 3 of Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, Germany (1996). [CrossRef] [Google Scholar]
  91. P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc. London Ser. A 245 (1958) 312–329. [CrossRef] [MathSciNet] [Google Scholar]
  92. M. Siegel, R.E. Caflisch and S. Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem. Commun. Pure Appl. Math. 57 (2004) 1374–1411. [Google Scholar]
  93. L. Székelyhidi Jr. Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. 45 (2012) 491–509. [CrossRef] [Google Scholar]
  94. L. Tartar, Incompressible fluid flow in a porous medium-convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia. Springer-Verlag Berlin (1980). [Google Scholar]
  95. A.R. Thornton, A.J. van der Horn, E. Gagarina, W. Zweers, D. van der Meer and O. Bokhove, Hele-shaw beach creation by breaking waves: a mathematics-inspired experiment. Environ. Fluid Mech. 14 (2014) 1123–1145. [CrossRef] [Google Scholar]
  96. S. Tofts, On the existence of solutions to the Muskat problem with surface tension. J. Math. Fluid Mech. 19 (2017) 581–611. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.