Growth phenomena
Free Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Growth phenomena
Article Number 8
Number of page(s) 21
DOI https://doi.org/10.1051/mmnp/2019034
Published online 17 February 2020
  1. G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y.A. Nastishin, S.V. Shiyanovskii, S. Sprunt and O.D. Lavrentovich, Elastic and viscous properties of the nematic dimer CB7CB. Phys. Rev. E 96 (2017) 062704. [PubMed] [Google Scholar]
  2. J.M. Ball and A. Majumdar, Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liquid Cryst. 525 (2010) 1–11. [CrossRef] [Google Scholar]
  3. J.M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202 (2011) 493–535. [Google Scholar]
  4. P. Bauman, J. Park and D. Phillips, Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205 (2012) 795–826. [Google Scholar]
  5. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, in Vol. 13. Birkhäuser Boston, Inc., Boston, MA (1994). [Google Scholar]
  6. L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differ. Equ. 90 (1991) 211–237. [Google Scholar]
  7. X. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ. 96 (1992) 116–141. [Google Scholar]
  8. P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347 (1995) 1533–1589. [Google Scholar]
  9. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45 (1992) 1097–1123. [Google Scholar]
  10. D. Golovaty, J.A. Montero and P. Sternberg, Dimension reduction for the Landau-de Gennes model in planar nematic thin films. J. Nonlinear Sci. 25 (2015) 1431–1451. [Google Scholar]
  11. D. Golovaty, M. Novack, P. Sternberg and R. Venkatraman, A model problem for nematic-isotropic transitions with highly disparate elastic constants. Preprint arXiv:1811.12586 (2018). [Google Scholar]
  12. D. Golovaty, M. Novack and P. Sternberg, A novel Landau-de Gennes model with quartic elastic terms. Preprint arXiv:1906.09232 (2019). [Google Scholar]
  13. R. Hardt and F.-H. Lin, Harmonic maps into round cones and singularities of nematic liquid crystals. Math. Z. 213 (1993) 575–593. [CrossRef] [Google Scholar]
  14. T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38 (1993) 417–461. [CrossRef] [Google Scholar]
  15. A. Kaznacheev, M. Bogdanov and S. Taraskin, The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals. J. Exp. Theor. Phys. 95 (2002) 57–63. [CrossRef] [Google Scholar]
  16. A. Kaznacheev, M. Bogdanov and A. Sonin, The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganicliquid crystals. J. Exp. Theor. Phys. 97 (2003) 1159–1167. [CrossRef] [Google Scholar]
  17. T.W. Kibble, Topology of cosmic domains and strings. J. Phys. A: Math. General 9 (1976) 1387. [NASA ADS] [CrossRef] [Google Scholar]
  18. Y.-K. Kim, S.V. Shiyanovskii and O.D. Lavrentovich, Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J. Phys.: Condens. Matter 25 (2013) 404202. [CrossRef] [Google Scholar]
  19. G. Kitavtsev, J.M. Robbins, V. Slastikov and A. Zarnescu, Liquid crystal defects in the Landau–de Gennes theory in two dimensions—beyond the one-constant approximation. Math. Models Methods Appl. Sci. 26 (2016) 2769–2808. [Google Scholar]
  20. M. Kleman and O.D. Laverntovich, Soft matter physics: an introduction. Springer Science & Business Media (2007). [Google Scholar]
  21. L. Longa, D. Monselesan and H.-R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liquid Cryst. 2 (1987) 769–796. [CrossRef] [Google Scholar]
  22. L. Longa, D. Monselesan and H.-R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liquid Cryst. 2 (1987) 769–796. [CrossRef] [Google Scholar]
  23. A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196 (2010) 227–280. [Google Scholar]
  24. N.J. Mottram and C. Newton, Introduction to Q-tensor theory. Technical Report 10, Department of Mathematics, University of Strathclyde (2004). [Google Scholar]
  25. Y.A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta, S.V. Shiyanovskii and O.D. Lavrentovich, Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter. Phys. Rev. E 72 (2005) 041711. [Google Scholar]
  26. P. Prinsen and P. van der Schoot, Shape and director-field transformation of tactoids. Phys. Rev. E 68 (2003) 021701. [Google Scholar]
  27. P. Prinsen and P. van der Schoot, Continuous director-field transformation of nematic tactoids. Eur. Phys. J. E 13 (2004) 35–41. [CrossRef] [EDP Sciences] [Google Scholar]
  28. P. Prinsen and P. van der Schoot, Parity breaking in nematic tactoids. J. Phys.: Condens. Matter 16 (2004) 8835. [CrossRef] [Google Scholar]
  29. J. Rubinstein, P. Sternberg and J.B. Keller, Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49 (1987) 116–133. [Google Scholar]
  30. J. Rubinstein, P. Sternberg and J.B. Keller, Reaction-diffusion processes and evolution to harmonic maps. SIAM J. Appl. Math. 49 (1989) 1722–1733. [Google Scholar]
  31. A. Sonnet and E. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, Bücher, New York (2012). [CrossRef] [Google Scholar]
  32. C. Zhang, A. Acharya, N.J. Walkington and O.D. Lavrentovich, Computational modelling of tactoid dynamics in chromonic liquid crystals. Liquid Cryst. 45 (2018) 1084–1100. [CrossRef] [Google Scholar]
  33. S. Zhou, A.J. Cervenka and O.D. Lavrentovich, Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow. Phys. Rev. E 90 (2014) 042505. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.