Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 43
Number of page(s) 14
DOI https://doi.org/10.1051/mmnp/2019053
Published online 24 September 2020
  1. V.I. Babitsky and V.L. Krupenin, Vibration of Strongly Nonlinear Discontinuous Systems. Springer, Berlin, Heidelberg (2001). [CrossRef] [Google Scholar]
  2. J.M. Balthazar, R.M.L.R.F. Brasil, J.L.P Felix, A.M. Tusset, V. Picirillo, I. Iluik, R.T. Rocha, A. Nabarrete and C. Oliveira, Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities. J. Phys: Conf. Ser. 721 (2016) 012004(1)–012004(12). [CrossRef] [Google Scholar]
  3. M. Borowiec, G. Litak and A. Syta, Vibration of the duffing oscillator: Effect of fractional damping. Shock Vib. 14 (2007) 29–36. [CrossRef] [Google Scholar]
  4. J.L.P Felix, J.M. Balthazar, R.M.L.R.F. Brasil and B.R. Pontes, On lugre friction model to mitigate nonideal vibrations. J. Comput. Nonlinear Dyn. 4 (2009) 034503(1)–034503(5). [Google Scholar]
  5. P. Hagedorn, On the destabilizing effect of non-linear damping in non-conservative systems with follower forces. Int. J. Non-Linear Mech. 5 (1970) 341–358. [CrossRef] [Google Scholar]
  6. V. Hassani, T. Tjahjowidodo and T. Nho Do A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49 (2014) 209–233. [Google Scholar]
  7. M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer Verlag, Berlin-Heidelberg-New York-Paris-Tokyo (1989). [CrossRef] [Google Scholar]
  8. Z.Q. Lang, S.A. Billings, R. Yue and J. Li, Output frequency response function of nonlinear Volterra systems. Automatica 43 (2007) 805–816. [CrossRef] [Google Scholar]
  9. M. Latour, Theoretical and Experimental Analysis of Dissipative Beam-to-Column Joints in Moment Resisting Steel Frames. Universal-Publishers (2011). [Google Scholar]
  10. A.Y.T. Leung, Z. Guo and H.X. Yang, Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators. Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 2900–2915. [Google Scholar]
  11. Q. Lv and Z. Yao, Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79 (2015) 2325–2332. [Google Scholar]
  12. A. Luongo, F. D’Annibale and M. Ferretti, Hard loss of stability of Ziegler’s column with nonlinear damping. Meccanica 51 (2016) 2647–2663. [Google Scholar]
  13. A. Luongo and F. D’Annibale, Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic Beck’beam. Math. Mech. Solids (2016). [PubMed] [Google Scholar]
  14. A. Luongo and F. D’Annibale, Linear and nonlinear damping effects on the stability of the Ziegler column. Structural Nonlinear Dynamics and Diagnosis: Selected papers from CSNDD 2012 and CSNDD 2014. Edited by M. Belhaq. Springer International Publishing (2015) 335–352. [CrossRef] [Google Scholar]
  15. Q. Ma, G. Cui and T. Jiao, Neural-network-based adaptive tracking control for a class of pure-feedback stochastic nonlinear systems with backlash-like hysteresis. Neurocomputing 144 (2014) 501–508. [Google Scholar]
  16. Z. Milovanovic, I. Kovacic and M.J. Brennan, On the displacement transmissibility of a base excited viscously damped nonlinearvibration isolator. J. Vib. Acoust. 131 (2009) 054502(1)–054502(7). [Google Scholar]
  17. A.H. Nayfeh and D.T. Mook, Nonlinear oscillations. John Wiley & Sons (2008). [Google Scholar]
  18. Z.K. Peng, G. Meng, Z.Q Lang, W.M. Zhang and F.L. Chu, Study of the effects of cubic nonlinear damping on vibration isolationsusing harmonic balance method. Int. J. Non-Linear Mech. 47 (2012) 1073–1080. [CrossRef] [Google Scholar]
  19. D. Rachinskii, On geometric conditions for reduction of the Moreau sweeping process to the prandtl-ishlinskii operator. Discr. Continu. Dyn. Syst. B 23 (2018) 3361. [Google Scholar]
  20. Y. Rochdi, F. Giri, F. Ikhouane, F.Z. Chaoui and J. Rodellar, Parametric identification of nonlinear hysteretic systems. Nonlinear Dyn. 58 (2009) 393–404. [Google Scholar]
  21. M. Ruderman and D Rachinskii, Use of prandtl-ishlinskii hysteresis operators for coulomb friction modeling with presliding. J. Phys.: Conf. Ser. 811 (2017) 012013. [Google Scholar]
  22. M.E. Semenov, A.M. Solovyov, P.A. Meleshenko and A.I. Barsukov, Bouc-wen model of hysteretic damping. Proc. Eng. 201 (2017) 549–555. [CrossRef] [Google Scholar]
  23. M.E. Semenov, A.M. Solovyov and P.A. Meleshenko, Elastic inverted pendulum with backlash in suspension: stabilization problem. Nonlinear Dyn. 82 (2015) 677–688. [Google Scholar]
  24. M.E. Semenov, P.A. Meleshenko, A.M. Solovyov and A.M. Semenov, Hysteretic nonlinearity in inverted pendulum problem. In Structural Nonlinear Dynamics and Diagnosis: Selected papers from CSNDD 2012 and CSNDD 2014, edited by M. Belhaq. Springer International Publishing (2015) 463–506. [CrossRef] [Google Scholar]
  25. J.-Y. Tu, P.-Y. Lin and T.-Y. Cheng, Continuous hysteresis model using duffing-like equation. Nonlinear Dyn. 80 (2015) 1039–1049. [Google Scholar]
  26. A.M. Tusset, J.M. Balthazar, D.G. Bassinello, B.R. Pontes and J.L.P. Felix, Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69 (2012) 1837–1857. [Google Scholar]
  27. J. Padovan and J. T. Sawicki, Nonlinear vibrations of fractionally damped systems. Nonlinear Dyn. 16 (1998) 321–336. [Google Scholar]
  28. R. Richards, Comparison of linear, nonlinear, hysteretic, and probabilistic mr damper models. Master’s thesis, Faculty of the Virginia Polytechnic Institute and State University (2007). [Google Scholar]
  29. E. Rigaud and J. Perret-Liaudet, Experiments and numerical results on non-linear vibrations of an impacting hertzian contact. part 1: harmonic excitation. J. Sound Vib. 265 (2003) 289–307. [Google Scholar]
  30. F. Rüdinger, Tuned mass damper with fractional derivative damping. Eng. Struct. 28 (2006) 1774–1779. [Google Scholar]
  31. A. Syta, G. Litak, S. Lenci and M. Scheffler, Chaotic vibrations of the duffing system with fractional damping. Chaos 24 (2014) 013107(1)–013107(6). [Google Scholar]
  32. M.E. Semenov, A.M. Solovyov, P.A. Meleshenko and J.M. Balthazar, Nonlinear damping: From viscous to hysteretic dampers. In Recent Trends in Applied Nonlinear Mechanics and Physics, edited by M. Belhaq. Springer International Publishing (2018) 259–275. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.