Math. Model. Nat. Phenom.
Volume 15, 2020
Fluid-structure interaction
Article Number 44
Number of page(s) 34
Published online 24 September 2020
  1. S.S. Antman, Nonlinear Problems of Elasticity. Springer (1995). [Google Scholar]
  2. M. Argentina and L. Mahadevan, Fluid-flow-induced flutter of a flag. Proc. National Acad. Sci. U.S.A. 102 (2005) 1829–1834. [CrossRef] [Google Scholar]
  3. H. Ashley and G. Zartarian, Piston theory: a new aerodynamic tool for the aeroelastician. J. Aeronaut. Sci. 23 (1956) 1109–1118. [CrossRef] [Google Scholar]
  4. A.V. Balakrishnan and A.M. Tuffaha, Aeroelastic flutter in axial flow-The continuum theory. AIP Conf. Proc. 1493 (2012) 58–66). [Google Scholar]
  5. J.M. Ball, Initial-boundary value problems for an extensible beam. J. Math. Anal. Applic. 42 (1973) 61–90. [CrossRef] [Google Scholar]
  6. V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability. Macmillan (1963). [Google Scholar]
  7. S.P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989) 15–55. [CrossRef] [MathSciNet] [Google Scholar]
  8. I. Chueshov, E.H. Dowell, I. Lasiecka and J.T. Webster, Nonlinear elastic plate in a flow of gas: recent results and conjectures. Appl. Math. Optim. 73 (2016) 475–500. [Google Scholar]
  9. I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-posedness and Long Time Dynamics. Springer Science & Business Media (2010). [CrossRef] [Google Scholar]
  10. D. Culver, K. McHugh and E. Dowell, An assessment and extension of geometrically nonlinear beam theories. Mech. Syst. Signal Process. 134 (2019) 106340. [Google Scholar]
  11. M. Deliyianni and J.T. Webster, A theory of solutions for an inextensible cantilever. Preprint arXiv:2005.11836 (2020). [Google Scholar]
  12. R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl. 29 (1970) 443–454. [Google Scholar]
  13. O. Doaré and S. Michelin, Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J. Fluids Struct. 27 (2011) 1357–1375. [Google Scholar]
  14. E.H. Dowell, Aeroelasticity of Plates and Shells, Vol. 1. Springer Science & Business Media (1974). [Google Scholar]
  15. E.H. Dowell, R. Clark, D. Cox, et al. A Modern Course in Aeroelasticity, fifth ed. Springer (2015). [Google Scholar]
  16. E. Dowell and K. McHugh, Equations of motion for an inextensible beam undergoing large deflections. J. Appl. Mech. 83 (2016) 051007. [Google Scholar]
  17. S.S. Dragomir, Some Gronwall type inequalities and applications. Electron. J. Differ. Equ. 2003 (2003) 1–13. [Google Scholar]
  18. J.A. Dunnmon, S.C. Stanton, B.P. Mann and E.H. Dowell, Power extraction from aeroelastic limit cycle oscillations. J. Fluids Struct. 27 (2011) 1182–1198. [Google Scholar]
  19. C. Eloy, R. Lagrange, C, Souilliez and L. Schouveiler, Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611 (2008) 97–106. [Google Scholar]
  20. A. Erturk and D.J. Inman, Piezoelectric Energy Harvesting. John Wiley & Sons (2011). [CrossRef] [Google Scholar]
  21. R.H. Fabiano and S.W. Hansen, Modeling and Analysis of a Three-layer Damped Sandwich Beam. Conference Publications (2001). [Google Scholar]
  22. S.M. Han, H. Benaroya and T. Wei, Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vibrat. 225 (1999) 935–988. [CrossRef] [Google Scholar]
  23. S. Hansen, Analysis of a plate with a localized piezoelectric patch, in Proceedings of the 37th IEEE Conference on Decision and Control, Cat. No. 98CH36171, Vol. 3 (1998) 2952–2957. [Google Scholar]
  24. P. Holmes and J. Marsden, Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis. Automatica 14 (1978) 367–384. [CrossRef] [Google Scholar]
  25. J. Howell, K. Huneycutt, J.T. Webster and S. Wilder, A thorough look at the (in)stability of piston-theoretic beams. Math. Eng. 1 (2019) 614–647. [CrossRef] [Google Scholar]
  26. J.S. Howell, D. Toundykov and J.T. Webster, A cantilevered extensible beam in axial flow: semigroup well-posedness and postflutter regimes. SIAM J. Math. Anal. 50 (2018) 2048–2085. [CrossRef] [Google Scholar]
  27. L. Huang, Flutter of cantilevered plates in axial flow. J. Fluids Struct. 9 (1995) 127–147. [Google Scholar]
  28. L. Huang and C. Zhang, Modal analysis of cantilever plate flutter. J. Fluids Struct. 38 (2013) 273–289. [Google Scholar]
  29. D. Kim, J. Cossé, C.H. Cerdeira and M. Gharib, Flapping dynamics of an inverted flag. J. Fluid Mech. 736 (2013). [Google Scholar]
  30. H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, in Evolution Equations, Semigroups and Functional Analysis. Birkhauser, Basel (2002) 197–216. [Google Scholar]
  31. J.E. Lagnese, Boundary stabilization of thin plates. SIAM, Philadelphia (1989). [CrossRef] [Google Scholar]
  32. J.E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Eq. 91 (1991) 355–388. [CrossRef] [MathSciNet] [Google Scholar]
  33. E. De Langre and O. Doaré, Edge flutter of long beams under follower loads. In Memoriam: Huy Duong Bui (2015) 283. [Google Scholar]
  34. I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation. Commun. Partial Differ. Eq. 24 (1999) 2069–2107. [CrossRef] [Google Scholar]
  35. I. Lasiecka, M. Pokojovy and X. Wan, Long-time behavior of quasilinear thermoelastic Kirchhoff–Love plates with second sound. Nonlinear Anal. 186 (2019) 219–258. [CrossRef] [Google Scholar]
  36. I. Lasiecka and R. Triggiani, Control theory for partial differential equations, in Abstract Parabolic Systems: Continuous and Approximation theories, Vol. 1. Cambridge University Press (2000). [Google Scholar]
  37. D. Levin and E. Dowell, Improving piezoelectric energy harvesting from an aeroelastic system , International Forum on Aeroelasticity and Structural Dynamics IFASD 2019 9-13 June 2019, Savannah, Georgia, USA (2019). [Google Scholar]
  38. T.F. Ma, V. Narciso and M.L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations. J. Math. Anal. Applic. 396 (2012) 694–703. [CrossRef] [Google Scholar]
  39. K.A. McHugh, Personal correspondence (2019). [Google Scholar]
  40. K.A. McHughand E.H. Dowell, Nonlinear response of an inextensible, cantilevered beam subjected to a nonconservative follower force. J. Comput. Nonlinear Dyn. 14 (2019) 031004. [Google Scholar]
  41. K.A. McHugh, P. Beran, M. Freydin and E.H. Dowell, Flutter and limit cycle oscillations of a cantilevered plate in supersonic/hypersonic flow, in Proceedings of IFASD 2019, Savannah GA (2019). [Google Scholar]
  42. D.J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vibrat. 10 (1969) 163–175. [CrossRef] [Google Scholar]
  43. A.O. Ozer, Dynamic and electrostatic modeling for a piezoelectric smart composite and related stabilization results. Preprint arXiv:1707.04744 (2017). [Google Scholar]
  44. M.P. Païdoussis, Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 1. Academic Press (1998). [Google Scholar]
  45. D.L. Russell, A comparison of certain elastic dissipation mechanisms via decoupling and projection techniques. Quart. Appl. Math. 49 (1991) 373–396. [CrossRef] [Google Scholar]
  46. D.L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Applic. 173 (1993) 339–358. [CrossRef] [Google Scholar]
  47. L. Scardia, The nonlinear bending-torsion theory for curved rods as Γ-limit of three-dimensional elasticity. Asymptotic Anal. 47 (2006) 317–343. [Google Scholar]
  48. C. Semler, G.X. Li and M.P. Païdoussis, The non-linear equations of motion of pipes conveying fluid. J. Sound Vibrat. 169 (1994) 577–599. [CrossRef] [Google Scholar]
  49. M. Serry and A. Tuffaha, Static stability analysis of a thin plate with a fixed trailing edge in axial subsonic flow: Possion integral equation approach. Preprint arXiv:1708.06956 (2017). [Google Scholar]
  50. M.A. Shubov and V.I. Shubov, Asymptotic and spectral analysis and control problems for mathematical model of piezoelectric energy harvester. Math. Eng. Sci. Aerospace (MESA) 7 (2016). [Google Scholar]
  51. S.C. Stanton, A. Erturk, B.P. Mann, E.H. Dowell and D.J. Inman, Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23 (2012) 183–199. [Google Scholar]
  52. D. Tang, S.C. Gibbs and E.H. Dowell, Nonlinear aeroelastic analysis with inextensible plate theory including correlation with experiment. AIAA J. 53 (2015) 1299–1308. [Google Scholar]
  53. D.M. Tang and E.H. Dowell, Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate. J. Fluids Struct. 76 (2018) 14–36. [Google Scholar]
  54. D. Tang, M. Zhao and E.H. Dowell, Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. 81 (2014) 061009. [Google Scholar]
  55. L. Tang and M.P. Pa, On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vibrat. 305 (2007) 97–115. [CrossRef] [Google Scholar]
  56. V.V. Vedeneev, Panel flutter at low supersonic speeds. J. Fluids Struct. 29 (2012) 79–96. [Google Scholar]
  57. S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17 (1950) 35–36. [Google Scholar]
  58. W. Zhao, M.P. Païdoussis, L. Tang, M. Liu and J. Jiang, Theoretical and experimental investigations of the dynamics of cantilevered flexible plates subjected to axial flow. J. Sound Vibrat. 331 (2012) 575–587. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.