Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 53
Number of page(s) 19
Published online 17 November 2020
  1. M. Al Janaideh, C. Visone, D. Davino and P. Krejčí. The generalized Prandtl-Ishlinskii model: relation with the Preisach nonlinearity and inverse compensation error, in 2014 American Control Conference (ACC) June 4 -6, 2014. Portland, Oregon, USA (2014). [Google Scholar]
  2. M. Al Janaideh, D. Davino, P. Krejčí and C. Visone, Comparison of Prandtl–Ishlinskii and Preisach modeling for smart devices applications. Phys. B: Condens. Matter 486 (2016) 155–159. [CrossRef] [Google Scholar]
  3. M. Brokate and J. Sprekels, Hysteresis and phase transitions. Springer, New York (1996). [CrossRef] [Google Scholar]
  4. D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magneto-mechanical hysteresis through ‘thermodynamic’ compatibility. Smart Mater. Struct. 22 (2013) 9. [Google Scholar]
  5. D. Davino and C. Visone, Rate-independent memory in magneto-elastic materials. Discrete Continuous Dyn. Syst. Ser. S 8 (2015) 649–691. [Google Scholar]
  6. O. Klein and P. Krejčí, Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations. Nonlinear Anal. Real World Appl. 4 (2003) 755–785. [Google Scholar]
  7. O. Klein and P. Krejčí, Asymptotic behaviour of evolution equations involving outwards pointing hysteresis operators. Phys. B 343 (2004) 53–58. [CrossRef] [Google Scholar]
  8. M. Krasnosel’skiǐ and A. Pokrovskii, Systems with Hysteresis. Russian edition: Nauka, Moscow, 1983. Springer-Verlag, Heidelberg (1989). [CrossRef] [Google Scholar]
  9. P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Vol. 8 of Gakuto Int. Series Math. Sci. & Appl. Gakkōtosho, Tokyo (1996). [Google Scholar]
  10. W. Liu, A Geostatistical Approach toward Shear Wave Velocity Modeling and Uncertainty Quantification in Seismic Hazard. Dissertations, Clemson University (2018). [Google Scholar]
  11. S.F. Masri, R. Ghanem, F. Arrate and J. Caffrey, Stochastic nonparametric models of uncertain hysteretic oscillators. AIAA J. 44 (2006) 2319–2330. [Google Scholar]
  12. I.D. Mayergoyz, Mathematical Models of Hysteresis and their Applications. 2nd edn. Elsevier, Amsterdam (2003). [Google Scholar]
  13. D.D. Rizos and S.D. Fassois, A-posteriori identifiability of the maxwell slip model of hysteresis. IFAC Proc. 44 (2011) 10788–10793. [CrossRef] [Google Scholar]
  14. R.C. Smith, Uncertainty quantification: theory, implementation, and applications, Vol. 12 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2014). [Google Scholar]
  15. T.J. Sullivan, Introduction to uncertainty quantification, Vol. 63 of Texts in Applied Mathematics. Springer, Cham (2015). [CrossRef] [Google Scholar]
  16. S.P. Triantafyllou and E.N. Chatzi, A hysteretic multiscale formulation for validating computational models of heterogeneous structures. J. Strain Anal. Eng. Des. 51 (2015) 46–62. [Google Scholar]
  17. A. Visintin, Differential Models of Hysteresis, Vol. 111 of Applied Mathematical Sciences. Springer, New York (1994). [CrossRef] [Google Scholar]
  18. C. Visone and M. Sjöström, Exact invertible hysteresis models based on play operators. Phys. B: Condens. Matter 343 (2004) 148–152. [CrossRef] [Google Scholar]
  19. Y. Zhang, Stochastic responses of multi-degree-of-freedom uncertain hysteretic systems (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.