Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 52
Number of page(s) 12
DOI https://doi.org/10.1051/mmnp/2020014
Published online 11 November 2020
  1. F. Al-Bender, W. Symens, J. Swevers and H. Van Brussel Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. Int. J. Non-linear Mech. 39 (2004) 1721–1735. [CrossRef] [Google Scholar]
  2. D. Angeli, Systems with counterclockwise input-output dynamics. IEEE Transa. Auto. Contr. 51 (2006) 1130–1143. [CrossRef] [Google Scholar]
  3. N.E. Barabanov and V.A. Yakubovich, Absolute stability of control systems having one hysteresis-like nonlinearity. Avtomatika i Telemekhanika 12 (1979) 5–12. [Google Scholar]
  4. G. Bertotti and I.D. Mayergoyz. The science of hysteresis, Vol. 1–3, Gulf Professional Publishing, Houston, Texas, USA, (2006). [Google Scholar]
  5. R.W. Brockett and H.B. Lee, Frequency-domain instability criteria for time-varying and nonlinear systems. Proc. IEEE 55 (1967) 604–619. [CrossRef] [Google Scholar]
  6. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, Berlin (1996). [CrossRef] [Google Scholar]
  7. J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plastic. 24 (2008) 1642–1693. [CrossRef] [Google Scholar]
  8. L.O. Chua and K.A. Stromsmoe, Mathematical model for dynamic hysteresis loops. Int. J. Eng. Sci. 9 (1971) 435–450. [Google Scholar]
  9. B.D. Coleman and M.L. Hodgdon, A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials. Int. J. Eng. Sci. 24 (1986) 897–919. [Google Scholar]
  10. P.R. Dahl, Solid friction damping of mechanical vibrations. AIAA J. 14 (1976) 1675–1682. [Google Scholar]
  11. D. Damjanovic, Hysteresis in piezoelectric and ferroelectric materials. Sci. Hysteres. 3 (2006) 337–465. [CrossRef] [Google Scholar]
  12. R. Dhaouadi and F.H. Ghorbel, Modelling and analysis of nonlinear stiffness, hysteresis and friction in harmonic drive gears. Int. J. Model. Simul. 28 (2008) 329–336. [CrossRef] [Google Scholar]
  13. J. Gerstmayr and H. Irschik, Vibrations of the elasto-plastic pendulum. Int. J Non-linear Mech. 38 (2003) 111–122. [CrossRef] [Google Scholar]
  14. M. Goldfarb and N. Celanovic, Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst. 17 (1997) 69–79. [Google Scholar]
  15. R.B. Gorbet, K.A. Morris and D.W.L. Wang, Passivity-based stability and control of hysteresis in smart actuators. IEEE Trans. Control Syst. Tech. 9 (2001) 5–16. [CrossRef] [Google Scholar]
  16. K.H. Hunt and F.R.E. Crossley, Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42 (1975) 440–445. [Google Scholar]
  17. H.K. Khalil, Nonlinear Systems, 3rd edn., Prentice Hall, Prentice (2002). [Google Scholar]
  18. T. Koizumi and H. Shibazaki, A study of the relationships governing starting rolling friction. Wear 93 (1984) 281–290. [Google Scholar]
  19. M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer, Berlin (1989). [CrossRef] [Google Scholar]
  20. P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattötoscho, Academy of Sciences of the Czech Republic Tokyo, Czech Republic Tokyo (1996). [Google Scholar]
  21. B.J. Lazan, Damping of materials and members in structural mechanics, Vol. 214, Pergamon press Oxford, Oxford (1968). [Google Scholar]
  22. A.I. Lureand V.N. Postnikov, On the theory of stability of control systems. Appl. Math. Mech. 8 (1944) 246–248. [Google Scholar]
  23. A.M. Lyapunov, The general problem of motion stability. Annal. Math. Studies 17 (1892). [Google Scholar]
  24. J.H. Oh and D.S. Bernstein, Semilinear duhem model for rate-independent and rate-dependent hysteresis. IEEE Trans. Automat. Control 50 (2005) 631–645. [CrossRef] [Google Scholar]
  25. Y. Orlov, Theory of optimal systems with generalized controls. Moscow, Nauka (1988). [Google Scholar]
  26. R. Ouyang and B. Jayawardhana, Absolute stability analysis of linear systems with duhem hysteresis operator. Automatica 50 (2014) 1860–1866. [CrossRef] [Google Scholar]
  27. T. Paré, A. Hassibi and J. How, A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities. Int. J. Control 74 (2001) 1140–1157. [Google Scholar]
  28. V.M. Popov, On absolute stability of non-linear automatic control systems. Automatika i Telemekhanika 22 (1961) 961–979. [Google Scholar]
  29. F. Preisach, Über die magnetische nachwirkung. Z. Phys. 94 (1935) 277–302. [CrossRef] [Google Scholar]
  30. M. Ruderman and M. Iwasaki, Sensorless torsion control of elastic joint robots with hysteresis and friction. IEEE Trans. Ind. Electron. 63 (2015) 1889–1899. [Google Scholar]
  31. M. Ruderman and D. Rachinskii, Use of Prandtl-Ishlinskii hysteresis operators for coulomb friction modeling with presliding. In J. Phys. Conf. Ser. 811 (2017) 012013. [CrossRef] [Google Scholar]
  32. I.W. Sandberg, A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element. Bell Sys. Techn. J. 43 (1964) 1601–1608. [CrossRef] [Google Scholar]
  33. S. Sastry, Nonlinear systems: analysis, stability, and control. Vol. 10. Springer, Berlin (2013). [Google Scholar]
  34. J.J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall Prentice (1991). [Google Scholar]
  35. A. Socoliuc, R. Bennewitz, E. Gnecco and E. Meyer, Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92 (2004) 134301. [CrossRef] [PubMed] [Google Scholar]
  36. A. Visintin, Differential models of hysteresis. Springer, Berlin (1994). [CrossRef] [Google Scholar]
  37. J.C. Willems, Dissipative dynamical systems. Euro. J. Control 13 (2007) 134–151. [CrossRef] [Google Scholar]
  38. V.A. Yakubovich, Method of matrix inequalities in the theory of stability of nonlinear controlled systems. iii. absolute stability of systems with hysteresis nonlinearities. Automat. Remote Control 26 (1965) 753–763. [Google Scholar]
  39. G. Zames, On the input-output stability of time-varying nonlinear feedback systems–part ii: Conditions involving circles in the frequency plane and sector nonlinearities. IEEE Trans. Automat. Control 11 (1966) 465–476. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.