Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 51
Number of page(s) 34
Published online 11 November 2020
  1. H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Springer, Berlin (2011). [Google Scholar]
  2. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000). [CrossRef] [Google Scholar]
  3. M. Brokate and P. Krejci, Weak Differentiability of Scalar Hysteresis Operators. Discrete Contin. Dyn. Syst. 35 (2015) 2405–2421. [CrossRef] [Google Scholar]
  4. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, New York (1996). [CrossRef] [Google Scholar]
  5. C. Christof, Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities. SIAM J. Control Opt. 57 (2019) 192–218. [CrossRef] [Google Scholar]
  6. I.V. Girsanov, Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972). [CrossRef] [Google Scholar]
  7. M. Hintermüller and K. Kunisch, PDE-constrained optimization subject to pointwise constraints on the control, the state, and its derivatives. SIAM J. Opt. 20 (2009) 1133–1156. [CrossRef] [Google Scholar]
  8. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Opt. 13 (2003) 865–888. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Hu and N.S. Papageorgiu, Handbook of multivalued analysis, volume I: Theory. Kluwer, South Holland (1997). [CrossRef] [Google Scholar]
  10. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM Series Advances in Design and Control. SIAM, Philadelphia, (2008). [Google Scholar]
  11. M.A. Krasnosel’skiĭ, B.M. Darinskiĭ, I.V. Emelin, P.P. Zabrejko, E.A. Lifshits and A.V. Pokrovskiĭ, An operator-hysterant, Dokl. Akad. Nauk SSSR 190 (1970) 34–37. [Google Scholar]
  12. M.A. Krasnosel’skiĭ, B.M. Darinskiĭ, I.V. Emelin, P.P. Zabrejko, E.A. Lifshits and A.V. Pokrovskiĭ, Soviet Math. Dokl. 11 (1970) 29–33. [Google Scholar]
  13. P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkōtosho, Tokyo (1996). [Google Scholar]
  14. A. Mielke and T. Roubíček, Rate-Independent Systems. Springer, Berlin (2015). [Google Scholar]
  15. F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22 (1976) 130–185. [Google Scholar]
  16. N.S. Papageorgiu and S.T. Kyritsi-Yiallourou, Handbook of applied analysis. Springer, Berlin (2009). [Google Scholar]
  17. M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2003) 805–841. [Google Scholar]
  18. M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia, (2011). [CrossRef] [Google Scholar]
  19. A. Visintin, Differential Models of Hysteresis. Springer, Berlin (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.