Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 15
Number of page(s) 14
Published online 12 March 2020
  1. M. Boshernitzan and I. Kornfeld, Interval translation mappings. Ergodic Theory Dyn. Syst. 15 (1995) 821–832. [CrossRef] [Google Scholar]
  2. H. Bruin, Renormalization in a class of interval translation maps of d branches. Dyn. Syst. 22 (2007) 11–24. [CrossRef] [Google Scholar]
  3. H. Bruin and G. Clack, Inducing and unique ergodicity of double rotations. Discrete Contin. Dyn. Syst. 32 (2012) 4133–4147. [CrossRef] [Google Scholar]
  4. H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings. Israel J. Math. 137 (2003) 125–148. [CrossRef] [Google Scholar]
  5. J Buzzi, Piecewise isometries have zero topological entropy. Ergodic Theory Dyn. Syst. 21 (2001) 1371–1377. [Google Scholar]
  6. J. Buzzi and P Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity. Ergodic Theory Dyn. Syst. 24 (2004) 383–405. [CrossRef] [Google Scholar]
  7. X.-C. Fu, J. Duan, Global attractors and invariant measures for non-invertible planar piecewise isometric maps. Phys. Lett. A 37 (2007) 285–290. [Google Scholar]
  8. A Goetz, Sofic subshifts and piecewise isometric systems. Ergodic Theory Dyn. Syst. 19 (1999) 1485–1501. [CrossRef] [Google Scholar]
  9. A Goetz, Dynamics of piecewise isometries. Illinois J. Math. 44 (2000) 465–478. [CrossRef] [Google Scholar]
  10. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1997). [Google Scholar]
  11. B. Pires, Invariant measures for piecewise continuous maps. Preprint arXiv:1603.02542 (2016). [Google Scholar]
  12. J. Schmeling and S. Troubetzkoy, Interval Translation Mappings. In Dynamical systems (Luminy-Marseille) (1998) 291–302. [Google Scholar]
  13. H. Suzuki, S. Ito and K. Aihara, Double rotations. Discrete Contin. Dyn. Syst. 13 (2005) 515–532. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Truong, Dynamics of piecewise translation maps. Preprint arXiv:1610.04700 (2017). [Google Scholar]
  15. M. Viana, Ergodic theory of interval exchange maps. Rev. Matem. Complut. 19 (2006) 7–100. [Google Scholar]
  16. D. Volk, Almost every interval translation map of three intervals is finite type. Discrete Continu. Dyn. Syst. A 34 (2014) 2307–2314. [CrossRef] [Google Scholar]
  17. D. Volk, Attractors of Piecewise Translation Maps. Preprint arXiv:1708.03780 (2017). [Google Scholar]
  18. J.-C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction. Available on:˙yoccoz.pdf (2020). [Google Scholar]
  19. C. Zhan-he, Y. Rong-zhong, F. Xin-chu, Invariant measures for planar piecewise isometries. J. Shanghai Univ. (Engl. Ed.) 14 (2010) 174–176. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.