Cancer modelling
Free Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Cancer modelling
Article Number 14
Number of page(s) 22
DOI https://doi.org/10.1051/mmnp/2019027
Published online 12 March 2020
  1. N. Ahuja, A.R. Sharma and S.B. Baylin, Epigenetic therapeutics: a new weapon in the war against cancer. Annu. Rev. Med. 67 (2016) 73–89. [CrossRef] [PubMed] [Google Scholar]
  2. L. Almeida, P. Bagnerini, G. Fabrini, B.D. Hughes and T. Lorenzi, Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model. ESAIM: M2AN 53 (2019) 1157–1190. [CrossRef] [EDP Sciences] [Google Scholar]
  3. P.M. Altrock, L.L. Liu and F. Michor, The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15 (2015) 730. [Google Scholar]
  4. A.R. Anderson and M. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60 (1998) 857–899. [Google Scholar]
  5. A.R. Anderson and V. Quaranta, Integrative mathematical oncology. Nat. Rev. Cancer 8 (2008) 227. [Google Scholar]
  6. A.R.A. Anderson and P.K. Maini, Mathematical oncology. Bull. Math. Biol. 80 (2018) 945–953. [Google Scholar]
  7. N. Beerenwinkel, C.D. Greenman and J. Lagergren, Computational cancer biology: an evolutionary perspective. PLOS Comput. Biol. 12 (2016) e1004717. [Google Scholar]
  8. M.V. Blagosklonny, Target for cancer therapy: proliferating cells or stem cells. Leukemia 20 (2006) 385–391. [CrossRef] [PubMed] [Google Scholar]
  9. A. Bouchnita, F.-E. Belmaati, R. Aboulaich, M. Koury and V. Volpert, A hybrid computation model to describe the progression of multiple myeloma and its intra-clonal heterogeneity. Computation 5 (2017) 16. [CrossRef] [Google Scholar]
  10. A. Bouchnita, N. Eymard, T.K. Moyo, M.J. Koury and V. Volpert, Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis. Am. J. Hematol. 91 (2016) 371–378. [CrossRef] [PubMed] [Google Scholar]
  11. I. Bozic, B. Allen and M. A. Nowak, Dynamics of targeted cancer therapy. Trends Mol. Med. 18 (2012) 311–316. [CrossRef] [PubMed] [Google Scholar]
  12. I. Bozic, J.G. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah, Y.S. Moon, A. Yaqubie, N. Kelly, D.T. Le, et al., Evolutionary dynamicsof cancer in response to targeted combination therapy. Elife 2 (2013) e00747. [CrossRef] [PubMed] [Google Scholar]
  13. A. Brock, H. Chang and S. Huang, Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours, Nat. Rev. Genet. 10 (2009) 336–342. [CrossRef] [PubMed] [Google Scholar]
  14. R. Brown, E. Curry, L. Magnani, C. S. Wilhelm-Benartzi and J. Borley, Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14 (2014) 747. [Google Scholar]
  15. A.E. Burgess, T. Lorenzi, P.G. Schofield, S.F. Hubbard and M.A. Chaplain, Examining the role of individual movement in promoting coexistence in a spatially explicit prisoner’s dilemma. J. Theor. Biol. 419 (2017) 323–332. [CrossRef] [PubMed] [Google Scholar]
  16. A.E. Burgess, P.G. Schofield, S.F. Hubbard, M.A. Chaplain, and T. Lorenzi, Dynamical patterns of coexisting strategies in a hybrid discrete-continuum spatial evolutionary game model. MMNP 11 (2016) 49–64. [Google Scholar]
  17. H.M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10 (2010) 221–230. [Google Scholar]
  18. K. Camphausen and P.J. Tofilon, Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J. Clin. Oncol. 25 (2007) 4051–4056. [CrossRef] [PubMed] [Google Scholar]
  19. N. Champagnat, R. Ferrière and G. Ben Arous The canonical equation of adaptive dynamics: a mathematical view. Selection 2 (2002) 73–83. [CrossRef] [Google Scholar]
  20. N. Champagnat, R. Ferrière and S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Populat. Biol. 69 (2006) 297–321. [CrossRef] [PubMed] [Google Scholar]
  21. W. Chen, T.K. Cooper, C.A. Zahnow, M. Overholtzer, Z. Zhao, M. Ladanyi, J.E. Karp, N. Gokgoz, J.S. Wunder, I.L. Andrulis, A.J. Levine, J.L. Mankowski and S.B. Baylin, Epigenetic and genetic loss of hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 6 (2004) 387–398. [CrossRef] [PubMed] [Google Scholar]
  22. R.H. Chisholm, T. Lorenzi and J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochim. Biophys. Acta 1860 (2016) 2627–2645. [CrossRef] [PubMed] [Google Scholar]
  23. R.H. Chisholm, T. Lorenzi, L. Desvillettes and B.D. Hughes, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences. Z. Angew. Math. Phys. 67 (2016) 1–34. [Google Scholar]
  24. R.H. Chisholm, T. Lorenzi and A. Lorz, Effects of an advection term in nonlocal lotka–volterra equations. Commun. Math. Sci. 14 (2016) 1181–1188. [Google Scholar]
  25. R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L.N. De Almeida, A. Escargueil and J. Clairambault, Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability and stress-induced adaptation. Cancer Res. 75 (2015) 930–939. [Google Scholar]
  26. H. Cho and D. Levy, Modeling the dynamics of heterogeneity of solid tumors in response to chemotherapy. Bull. Math. Biol. 79 (2017) 2986–3012. [Google Scholar]
  27. H. Cho and D. Levy, Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth. J. Theor. Biol. 436 (2018) 120–134. [CrossRef] [PubMed] [Google Scholar]
  28. D.D. De Carvalho, S. Sharma, J.S. You, S.-F. Su, P.C. Taberlay, T.K. Kelly, X. Yang, G. Liang and P.A. Jones, DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 21 (2012) 655–667. [CrossRef] [PubMed] [Google Scholar]
  29. M. Delitala and T. Lorenzi, A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions. J. Theor. Biol. 297 (2012) 88–102. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. M. Esteller, Epigenetics in cancer. N. Engl. J. Med. 358 (2008) 1148–1159. [Google Scholar]
  31. N. Eymard, V. Volpert, P. Kurbatova, V. Volpert, N. Bessonov, K. Ogungbenro, L. Aarons, P. Janiaud, P. Nony, A. Bajard, et al., Mathematical model of t-cell lymphoblastic lymphoma: disease, treatment, cure or relapse of a virtual cohort of patients. Math. Med. Biol. 35 (2016) 25–47. [Google Scholar]
  32. A.P. Feinberg, M.A. Koldobskiy and A. Göndör, Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17 (2016) 284. [CrossRef] [PubMed] [Google Scholar]
  33. A.P. Feinberg and B. Tycko, The history of cancer epigenetics. Nat. Rev. Cancer 4 (2004) 143. [CrossRef] [PubMed] [Google Scholar]
  34. L.C. Franssen, T. Lorenzi, A.E. Burgess and M.A. Chaplain, A mathematical framework for modelling the metastatic spread of cancer. Bull. Math. Biol. (2018) 1–46. [Google Scholar]
  35. A. Ganesan, Epigenetic drug discovery: a success story for cofactor interference. Philos. Trans. R. Soc. B: Biol. Sci. 373 (2018) 20170069. [CrossRef] [Google Scholar]
  36. R.A. Gatenby and P.K. Maini, Mathematical oncology: cancer summed up. Nature 421 (2003) 321. [Google Scholar]
  37. R.A. Gatenby, A.S. Silva, R.J. Gillies and B.R. Frieden, Adaptive therapy. Cancer Res. 69 (2009) 4894–4903. [Google Scholar]
  38. R. Glasspool, J.M. Teodoridis and R. Brown, Epigenetics as a mechanism driving polygenic clinical drug resistance. Br. J. Cancer 94 (2006) 1087–1092. [CrossRef] [PubMed] [Google Scholar]
  39. M. Greaves and C.C. Maley, Clonal evolution in cancer. Nature 481 (2012) 306–313. [Google Scholar]
  40. S. Hamis, P. Nithiarasu and G.G. Powathil, What does not kill a tumour may make it stronger: in silico insights into chemotherapeutic drug resistance. J. Theor. Biol. 454 (2018) 253–267. [CrossRef] [PubMed] [Google Scholar]
  41. S. Heerboth, K. Lapinska, N. Snyder, M. Leary, S. Rollinson and S. Sarkar, Use of epigenetic drugs in disease: an overview. Genet. Epigenet. 6 (2014) 9. [CrossRef] [PubMed] [Google Scholar]
  42. G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder and S. Sarkar, Drug resistance in cancer: an overview. Cancers 6 (2014) 1769–1792. [CrossRef] [PubMed] [Google Scholar]
  43. S. Huang, Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metas. Rev. 32 (2013) 423–448. [CrossRef] [PubMed] [Google Scholar]
  44. P.A. Jones and P.W. Laird, Cancer-epigenetics comes of age. Nat. Genet. 21 (1999) 163. [Google Scholar]
  45. M.R. Junttila and F.J. de Sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501 (2013) 346–354. [Google Scholar]
  46. K.S. Korolev, J.B. Xavier and J. Gore, Turning ecology and evolution against cancer. Nat. Rev. Cancer 14 (2014) 371. [Google Scholar]
  47. S. Kumar, R.K. Srivastav, D.W. Wilkes, T. Ross, S. Kim, J. Kowalski, S. Chatla, Q. Zhang, A. Nayak, M. Guha, et al., Estrogen-dependent dll1-mediated notch signaling promotes luminal breast cancer. Oncogene (2018) 1. [Google Scholar]
  48. P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer and V. Volpert, Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J. Appl. Math. 71 (2011) 2246–2268. [Google Scholar]
  49. A.A. Lane and B.A. Chabner, Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol. 27 (2009) 5459–5468. [CrossRef] [PubMed] [Google Scholar]
  50. O. Lavi, J.M. Greene, D. Levy and M.M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Res. 73 (2013) 7168–7175. [Google Scholar]
  51. O. Lavi, J.M. Greene, D. Levy and M.M. Gottesman, Simplifying the complexity of resistance heterogeneity in metastasis. Trends Molec. Med. 20 (2014) 129–136. [CrossRef] [PubMed] [Google Scholar]
  52. T. Lorenzi, R.H. Chisholm and J. Clairambault, Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations. Biol. Direct 11 (2016) 43. [Google Scholar]
  53. T. Lorenzi, R.H. Chisholm, L. Desvillettes and B.D. Hughes, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J. Theor. Biol. 386 (2015) 166–176. [CrossRef] [PubMed] [Google Scholar]
  54. T. Lorenzi, C. Venkataraman, A. Lorz and M.A. Chaplain, The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity. J. Theor. Biol. 451 (2018) 101–110. [CrossRef] [PubMed] [Google Scholar]
  55. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77 (2015) 1–22. [Google Scholar]
  56. A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: M2AN 47 (2013) 377–399. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  57. D.E. Matei and K.P. Nephew, Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. Gynecolog. Oncol. 116 (2010) 195–201. [CrossRef] [Google Scholar]
  58. L.M. Merlo, J.W. Pepper, B.J. Reid and C.C. Maley, Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6 (2006) 924–935. [Google Scholar]
  59. J. Miller, Parabolic cylinder functions, in Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, DC (1964) 686–720. [Google Scholar]
  60. R.L. Momparler, Cancer epigenetics. Oncogene 22 (2003) 6479. [Google Scholar]
  61. P.C. Nowell, The clonal evolution of tumor cell populations. Science 194 (1976) 23–28. [Google Scholar]
  62. A. Olivier and C. Pouchol, Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. J. Optim. Theory Appl. (2018). [Google Scholar]
  63. J. Otwinowski and J.B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis. Proc. Natl. Acad. Sci. 111 (2014) E2301–E2309. [CrossRef] [Google Scholar]
  64. P. Peltomäki, Mutations and epimutations in the origin of cancer. Exp. Cell Res. 318 (2012) 299–310. [PubMed] [Google Scholar]
  65. B. Perthame, Transport equations in biology, Birkhäuser, Basel, 2006. [Google Scholar]
  66. S.X. Pfister and A. Ashworth, Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Disc. 16 (2017) 241. [CrossRef] [Google Scholar]
  67. G. Piazzi, L. Fini, M. Selgrad, M. Garcia, Y. Daoud, T. Wex, P. Malfertheiner, A. Gasbarrini, M. Romano, R.L. Meyer, et al., Epigenetic regulation of delta-like controls notch activation in gastric cancer. Oncotarget 2 (2011) 1291. [CrossRef] [PubMed] [Google Scholar]
  68. A. Pisco and S. Huang, Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse:‘what does not kill me strengthens me’. Br. J. Cancer 112 (2015) 1725–1732. [CrossRef] [PubMed] [Google Scholar]
  69. A.O. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi, D. Jackson and S. Huang, Non-darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun. 4 (2013) 2467. [CrossRef] [PubMed] [Google Scholar]
  70. F.J. Poelwijk, D.J. Kiviet, D.M. Weinreich and S.J. Tans, Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445 (2007) 383. [Google Scholar]
  71. C. Pouchol, J. Clairambault, A. Lorz and E. Trélat, Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116 (2018) 268–308. [Google Scholar]
  72. Y. Pu, F. Zhao, H. Wang and S. Cai, Mir-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the dll gene. Sci. Reports 7 (2017) 44218. [CrossRef] [Google Scholar]
  73. D.F. Quail and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19 (2013) 1423–1437. [CrossRef] [PubMed] [Google Scholar]
  74. S. Sarkar, G. Horn, K. Moulton, A. Oza, S. Byler, S. Kokolus and M. Longacre, Cancer development, progression and therapy: an epigenetic overview. Int. J. Mol. Sci. 14 (2013) 21087–21113. [Google Scholar]
  75. P. Schofield, M. Chaplain and S. Hubbard, Mathematical modelling of host–parasitoid systems: effects of chemically mediated parasitoid foraging strategies on within-and between-generation spatio-temporal dynamics. J. Theor. Biol. 214 (2002) 31–47. [CrossRef] [PubMed] [Google Scholar]
  76. P.G. Schofield, M.A. Chaplain and S.F. Hubbard, Dynamic heterogeneous spatio-temporal pattern formation in host-parasitoid systems with synchronised generations. J. Math. Biol. 50 (2005) 559–583. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  77. A. Sharma, E.Y. Cao, V. Kumar, X. Zhang, H.S. Leong, A.M.L. Wong, N. Ramakrishnan, M. Hakimullah, H.M.V. Teo, F.T. Chong, et al., Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat. Commun. 9 (2018) 4931. [PubMed] [Google Scholar]
  78. S. Sharma, T.K. Kelly and P.A. Jones, Epigenetics in cancer. Carcinogenesis 31 (2010) 27–36. [CrossRef] [PubMed] [Google Scholar]
  79. S.V. Sharma, D.Y. Lee, B. Li, M.P. Quinlan, F. Takahashi, S. Maheswaran, U. McDermott, N. Azizian, L. Zou, M.A. Fischbach, et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141 (2010) 69–80. [CrossRef] [PubMed] [Google Scholar]
  80. A.S. Silva, Y. Kam, Z.P. Khin, S.E. Minton, R.J. Gillies and R.A. Gatenby, Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72 (2012) 6362–6370. [Google Scholar]
  81. V. Singh, P. Sharma and N. Capalash, DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr. Cancer Drug Targets 13 (2013) 379–399. [PubMed] [Google Scholar]
  82. G. Steel and L. Lamerton, The growth rate of human tumours. Br. J. Cancer 20 (1966) 74. [CrossRef] [PubMed] [Google Scholar]
  83. Y. Tamori and W.-M. Deng, Cell competition and its implications for development and cancer. J. Genetics Genom. 38 (2011) 483–495. [CrossRef] [PubMed] [Google Scholar]
  84. N. Temme, Parabolic cylinder functions, NIST Handbook of Mathematical Functions (2010) 303–319. [Google Scholar]
  85. F. Thomas, D. Fisher, P. Fort, J.-P. Marie, S. Daoust, B. Roche, C. Grunau, C. Cosseau, G. Mitta, S. Baghdiguian, et al., Applyingecological and evolutionary theory to cancer: a long and winding road. Evol. Appl. 6 (2013) 1–10. [CrossRef] [PubMed] [Google Scholar]
  86. O. Trédan, C.M. Galmarini, K. Patel and I.F. Tannock, Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99 (2007) 1441–1454. [CrossRef] [PubMed] [Google Scholar]
  87. H.-C. Tsai and S.B. Baylin, Cancer epigenetics: linking basic biology to clinical medicine. Cell Res. 21 (2011) 502. [CrossRef] [PubMed] [Google Scholar]
  88. L. Wagstaff, G. Kolahgar and E. Piddini, Competitive cell interactions in cancer: a cellular tug of war. Trends Cell Biol. 23 (2013) 160–167. [Google Scholar]
  89. C.B. Yoo and P.A. Jones, Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5 (2006) 37–50. [PubMed] [Google Scholar]
  90. H. Zhang, S. Pandey, M. Travers, H. Sun, G. Morton, J. Madzo, W. Chung, J. Khowsathit, O. Perez-Leal, C.A. Barrero, et al., Targeting cdk9 reactivates epigenetically silenced genes in cancer. Cell 175 (2018) 1244–1258. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.