Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 47
Number of page(s) 18
DOI https://doi.org/10.1051/mmnp/2019054
Published online 24 September 2020
  1. N. Akhmediev and A. Ankiewicz, editors, Dissipative Solitons. Springer, Berlin, Heidelberg (2005). [Google Scholar]
  2. G.A. Baker and P. Graves-Moris, Padé approximants. Part I: basic theory. Addison-Wesley (1981). [Google Scholar]
  3. U. Bandelow, M. Radziunas, A. Vladimirov, B. Huettl and R. Kaiser, 40 GHz modelocked semiconductor lasers: Theory, simulations and experiment. Opt. Quant. Electr. 38 (2006) 495–512. [Google Scholar]
  4. M. Brambilla, L. Lugiato, F. Prati, L. Spinelli and W. Firth, Spatial soliton pixels in semiconductor devices. Phys. Rev. Lett. 79 (1997) 2042. [Google Scholar]
  5. K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v.2.00: A MATLAB package for bifurcation analysis of delay differential equations. Technical Report TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium (2001). [Google Scholar]
  6. W.J. Firth and A. J. Scroggie, Optical bullet holes: Robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76 (1996) 1623–1626. [CrossRef] [PubMed] [Google Scholar]
  7. B. Garbin, J. Javaloyes, G. Tissoni and S. Barland, Topological solitons as addressable phase bits in a driven laser. Nat. Commun. 6 (2015). [Google Scholar]
  8. F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz and S. Barland, Dissipative phase solitons in semiconductor lasers. Phys. Rev. Lett. 115 (2015) 043902. [PubMed] [Google Scholar]
  9. T. Hansson and S. Wabnitz, Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons. J. Opt. Soc. Am. B 32 (2015) 1259–1266. [Google Scholar]
  10. L. Jaurigue, B. Krauskopf and K. Lüdge, Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback. Chaos 27 (2017) 114301. [Google Scholar]
  11. Y. Kartashov, O. Alexander and D. Skryabin, Multistability and coexisting soliton combs in ring resonators: the Lugiato-Lefever approach. Opt. Express 25 (2017) 11550–11555. [PubMed] [Google Scholar]
  12. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit and M. Haelterman, Temporal cavity solitons in one-dimensional kerr media as bits in an all-optical buffer. Nat. Photon. 4 (2010) 471. [Google Scholar]
  13. F. Leo, L. Gelens, P. Emplit, M. Haelterman and S. Coen, Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21 (2013) 9180–9191. [PubMed] [Google Scholar]
  14. L.A. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58 (1987) 2209. [CrossRef] [PubMed] [Google Scholar]
  15. M. Marconi, J. Javaloyes, S. Balle and M. Giudici, How lasing localized structures evolve out of passive mode locking. Phys. Rev. Lett. 112 (2014) 223901. [CrossRef] [PubMed] [Google Scholar]
  16. M. Marconi, J. Javaloyes, S. Barland, S. Balle and M. Giudici, Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays. Nat. Photon. 9 (2015) 450–455. [Google Scholar]
  17. C. Otto, K. Lüdge, A. G. Vladimirov, M. Wolfrum and E. Schöll, Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical injection. N. J. Phys. 14 (2012) 113033. [Google Scholar]
  18. A. Pimenov, A. G. Vladimirov, S. V. Gurevich, K. Panajotov, G. Huyet and M. Tlidi, Delayed feedback control of self-mobile cavity solitons. Phys. Rev. A 88 (2013) 053830. [Google Scholar]
  19. A. Pimenov, S. Slepneva, G. Huyet and A.G. Vladimirov, Dispersive time-delay dynamical systems. Phys. Rev. Lett. 118 (2017) 193901. [PubMed] [Google Scholar]
  20. H.-G. Purwins, H. U. Bödeker and S. Amiranashvili, Dissipative solitons. Adv. Phys. 59 (2010) 485–701. [Google Scholar]
  21. N. Rosanov and G. Khodova, Diffractive autosolitons in nonlinear interferometers. J. Opt. Soc. Am. B 7 (1990) 1057–1065. [Google Scholar]
  22. N.N. Rosanov, Spatial Hysteresis and Optical Patterns. Springer Series in Synergetics. Springer (2002). [Google Scholar]
  23. C. Schelte, J. Javaloyes and S.V. Gurevich, Dynamics of temporally localized states in passively mode-locked semiconductor lasers. Phys. Rev. A 97 (2018) 053820. [Google Scholar]
  24. A. Scroggie, W. Firth, G. McDonald, M. Tlidi, R. Lefever and L.A. Lugiato, Pattern formation in a passive kerr cavity. Chaos Solitons Fractals 4 (1994) 1323–1354. [Google Scholar]
  25. S. Slepneva, B. Kelleher, B. O’Shaughnessy, S. Hegarty, A.G. Vladimirov and G. Huyet, Dynamics of fourier domain mode-locked lasers. Opt. Express 21 (2013) 19240–19251. [PubMed] [Google Scholar]
  26. M. Tlidi, P. Mandel and R. Lefever, Localized structures and localized patterns in optical bistability. Phys. Rev. Lett. 73 (1994) 640. [CrossRef] [PubMed] [Google Scholar]
  27. M. Tlidi, A. Vladimirov, D. Pieroux and D. Turaev, Spontaneous motion of cavity solitons induced by a delayed feedback. Phys. Rev. Lett. 103 (2009) 103904. [CrossRef] [PubMed] [Google Scholar]
  28. M. Tlidi, E. Averlant, A. Vladimirov and K. Panajotov, Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven semiconductor microcavities. Phys. Rev. A 86 (2012 ) 033822. [Google Scholar]
  29. M. Tlidi, K. Panajotov, M. Ferré and M. G. Clerc, Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in kerr optical frequency comb and in all fiber cavities. Chaos 27 (2017) 114312. [Google Scholar]
  30. A. Vladimirov, S. Fedorov, N. Kaliteevskii, G. Khodova and N. Rosanov, Numerical investigation of laser localized structures. J. Opt. B: Quant. Semiclass. Opt. 1 (1999) 101–106. [CrossRef] [Google Scholar]
  31. A. Vladimirov, A. Pimenov, S. Gurevich, K. Panajotov, E. Averlant and M. Tlidi, Cavity solitons in vertical-cavity surface-emitting lasers. Philos. Trans. Royal Soc. A 372 (2014) 20140013. [CrossRef] [Google Scholar]
  32. A.G. Vladimirov and D. Turaev, New model for mode-locking in semiconductor lasers. Radiophys. Quant. Electr. 47 (2004) 857–865. [CrossRef] [Google Scholar]
  33. A.G. Vladimirov and D. Turaev, Model for passive mode-locking in semiconductor lasers. Phys. Rev. A 72 (2005) 033808. [Google Scholar]
  34. A.G. Vladimirov, N.N. Rozanov, S.V. Fedorov and G. Khodova, Bifurcation analysis of laser autosolitons. Quantum Electr. 27 (1997) 949–952. [CrossRef] [Google Scholar]
  35. A.G. Vladimirov, N.N. Rozanov, S.V. Fedorov and G. Khodova, Analysis of the stability of laser solitons. Quantum Electr. 28 (1998) 55–57. [CrossRef] [Google Scholar]
  36. A.G. Vladimirov, D. Turaev and G. Kozyreff, Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29 (2004) 1221–1223. [CrossRef] [PubMed] [Google Scholar]
  37. A.G. Vladimirov, A.S. Pimenov and D. Rachinskii, Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser. IEEE J. Quantum Electr. 45 (2009) 462–468. [CrossRef] [Google Scholar]
  38. A.G. Vladimirov, G. Huyet and A. Pimenov, Delay differential models in multimode laser dynamics: taking chromatic dispersion into account. Proc. SPIE 9892 (2016). [Google Scholar]
  39. S. Yanchuk and M. Wolfrum, A multiple time scale approach to the stability of external cavity modes in the Lang-Kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Syst. 9 (2010) 519–535. [Google Scholar]
  40. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34 (1972) 62–69. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.