Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Coronavirus: Scientific insights and societal aspects
Article Number 48
Number of page(s) 21
DOI https://doi.org/10.1051/mmnp/2020035
Published online 14 October 2020
  1. B. Ainseba, S. Aniţa and M. Langlais, Optimal control for a nonlinear age-structured population dynamics model. Electron. J. Differ. Equ. 9 (2003) 28. [Google Scholar]
  2. J. Bonnans, D. Giorgi, V. Grélard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop – a collection of examples. Technical report, INRIA (2017). [Google Scholar]
  3. J.F. Bonnans and J. Gianatti, Optimal control of state constrained age-structured problems. SIAM J. Control Optim. 58 (2020) 2206–2235. [Google Scholar]
  4. M. Brokate, Pontryagin’s principle for control problems in age-dependent population dynamics. J. Math. Biol. 23 (1985) 75–101. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M.T. Sofonea and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. Preprint MedRxiv: 20049189v2 (2020). [Google Scholar]
  6. R. Elie, E. Hubert and G. Turinici, Contact rate epidemic control of covid-19: an equilibrium view. MMNP 15 (2020) 35. [EDP Sciences] [Google Scholar]
  7. W.O. Kermack, A.G. McKendrick and G.T. Walker, A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A 115 (1927) 700–721. [Google Scholar]
  8. Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S.S. Musa, M.H. Wang, Y. Cai, W. Wang, L. Yang and D. He. A conceptual model for the coronavirusdisease 2019 (covid-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 93 (2020) 211–216. [CrossRef] [PubMed] [Google Scholar]
  9. Z. Liu, P. Magal, O. Seydi and G. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. Preprint MedRxiv: 20034314v1 (2020). [Google Scholar]
  10. Z. Liu, P. Magal, O. Seydi and G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions. Biology 9 (2020) 50. [Google Scholar]
  11. H. Maurer and M. do Rosario de Pinho, Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints. Pac. J. Optim. 12 (2016) 415–436. [Google Scholar]
  12. Q. Richard, S. Alizon, M. Choisy, M.T. Sofonea and R. Djidjou-Demasse, Age-structured non-pharmaceutical interventions for optimal control of covid-19 epidemic. Preprint MedRxiv: 20138099v1 (2020). [Google Scholar]
  13. C. Silva, H. Maurer and D. Torres, Optimal control of a tuberculosis model with state and control delays. Math. Biosci. Eng. 14 (2017) 321–337. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.