Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 49
Number of page(s) 24
Published online 11 November 2020
  1. G. Antinolfi, C. Azariadis and J.B. Bullard, Monetary policy as equilibrium selection. Rev. Federal Reserve Bank Saint Louis 89 (2007) 331–342. [Google Scholar]
  2. M. Al Janaideh, S. Rakheja and C.Y. Su, A generalized Prandtl-Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Mater. Struct. 18 (2009) 045001. [Google Scholar]
  3. M. Arnold, N. Begun, P. Gurevich, E. Kwame, H. Lamba and D. Rachinskii, Dynamics of discrete time systems with a hysteresis stop operator. SIAM J. Appl. Dyn. Syst. 16 (2017) 91–119. [Google Scholar]
  4. V. Avrutin and I. Sushko, A gallery of bifurcation scenarios in piecewise smooth 1d maps, in Global Analysis of Dynamic Models in Economics and Finance. Springer (2013) 369–395. [CrossRef] [Google Scholar]
  5. L.M. Ball, Hysteresis in unemployment: Old and new evidence. The National Bureau of Economic Research Working Paper 14818 (2009) 1–35. [Google Scholar]
  6. O. Blanchard and J. Wolfers, The roles of shocks and institutions in the rise of European unemployment: the aggregate evidence. Econ. J. 110 (2000) C1–C33. [CrossRef] [Google Scholar]
  7. J. Benhabib and R.E.A. Farmer, Indeterminacy and sunspots in macroeconomics. In Vol. 1 of Handbook of Macroeconomics (1999) 387–448. [CrossRef] [Google Scholar]
  8. A. Bick, Threshold effects of inflation on economic growth in developing countries. Econ. Lett. 108 (2010) 126–129. [Google Scholar]
  9. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer Series in Computational Mathematics. Springer Berlin Heidelberg (1996). [Google Scholar]
  10. W.A. Branch, Sticky information and model uncertainty in survey data on inflation expectations. J. Econ. Dyn. Control 31 (2007) 245–276. [Google Scholar]
  11. C.D. Carroll, Macroeconomic expectations of households and professional forecasters. Quart. J. Econ. 118 (2003) 269–298. [CrossRef] [Google Scholar]
  12. G.A. Calvo, Staggered prices in a utility-maximizing framework. J. Monet. Econ. 12 (1983) 383–398. [Google Scholar]
  13. L. J. Christiano, M. Trabandt and K. Walentin, DSGE models for monetary policy analysis, in Handbook of Monetary Economics, edited by B.B. Friedman and M. Woodford. Elsevier (2010) 285–367. [CrossRef] [Google Scholar]
  14. D. Colander, P. Howitt, A. Kirman, A. Leijonhufvud and P. Mehrling, Beyond DSGE models: toward an empirically based macroeconomics. Am. Econ. Rev. 98 (2008) 236–240. [Google Scholar]
  15. R. Curtin, Inflation expectations and empirical tests. Inflation Expect. 56 (2010) 34–61. [Google Scholar]
  16. J. Darby, R. Cross and L. Piscitelli, Hysteresis and unemployment: a preliminary investigation. Vol. 1 of The Science of Hysteresis, edited by G. Bertotti, I. Mayergoyz. Elsevier (2006) 667–699. [CrossRef] [Google Scholar]
  17. G.W. Evans, B. McGough, Observability and equilibrium selection. Tech. rep., Mimeo, University of Oregon (2015). [Google Scholar]
  18. X. Gabaix, A sparsity-based model of bounded rationality. Quart. J. Econ. 129 (2014) 1661–1710. [CrossRef] [Google Scholar]
  19. P.D. Grauwe, Booms and busts in economic activity: a behavioral explanation. J. Econ. Behav. Organ. 83 (2012) 484–501. [Google Scholar]
  20. M. Göcke, Various concepts of hysteresis applied in economics. J. Econ. Surv. 16 (2002) 167–188. [Google Scholar]
  21. M. Göcke and L. Werner, Play hysteresis in supply or in demand as part of a market model. Metroeconomica 66 (2015) 339–374. [Google Scholar]
  22. J.M. Frimpong and E.F. Oteng-Abayie, When is inflation harmful? Estimating the threshold effect for Ghana. Am. J. Econ. Bus. Admin. 2 (2010) 232–239. [Google Scholar]
  23. G. Fuchs, Structural stability for dynamical economic models. J. Math. Econ. 2 (1975) 139–154. [Google Scholar]
  24. R. F. Hartl and P.M. Kort, History dependence without unstable steady state: a non-differentiable framework. J. Math. Econ. 39 (2003) 891–900. [Google Scholar]
  25. B.D. Keen, Output, inflation, and interest rates in an estimated optimizing model of monetary policy. Rev. Econ. Dyn. 12 (2009) 327–343. [Google Scholar]
  26. A. Ishlinskii, Some applications of statistical methods to describing deformations of bodies. Izv. A.N. S.S.S.R., Techn. Ser. 9 (1944) 583–590. [Google Scholar]
  27. N. Kaldor, The irrelevance of equilibrium economics. Econ. J. 82 (1972) 1237–1255. [CrossRef] [Google Scholar]
  28. J.M. Keynes, Poverty in plenty: is the economic system self-adjusting?, The Listener, London, CWK (1934) 489–497. [Google Scholar]
  29. M.S. Khan and A.S. Senhadji, Threshold effects in the relationship between inflation and growth. IMF Staff Papers 48 (2001) 1–21. [Google Scholar]
  30. M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer (1989). [CrossRef] [Google Scholar]
  31. S. Kremer, A. Bick and D. Nautz, Inflation and growth: new evidence from a dynamic panel threshold analysis. Empir. Econ. 44 (2013) 861–878. [Google Scholar]
  32. P. Krejčí, H. Lamba, S. Melnik and D. Rachinskii, Analytical solutions for a class of network dynamics with mechanical and financial applications. Phys. Rev. E 90 (2014) 032822. [Google Scholar]
  33. P. Krejčí and P. Laurençot, Hysteresis filtering in the space of bounded measurable functions. Boll. Unione Mat. Ital. 8 (2002) 755–772. [Google Scholar]
  34. P. Krejčí, E. Kwame, H. Lamba and D. Rachinskii, A continuum of path-dependent equilibrium solutions induced by sticky expectations. Preprint arXiv:1711.08038 (2017). [Google Scholar]
  35. P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Math. Meth. Appl. Sci. 30 (2007) 2371–2393. [CrossRef] [Google Scholar]
  36. P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equation. Math. Z. 193 (1986) 247–264. [CrossRef] [Google Scholar]
  37. P. Krejčí, H. Lamba, S. Melnik and D. Rachinskii, Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discr. Continu. Dyn. Syst. B 20 (2015) 2949–2965. [CrossRef] [Google Scholar]
  38. P. Krejčí, H. Lamba, G.A. Monteiro and D. Rachinskii, Kurzweil integral in financial market modelling. Math. Bohem. 141 (2016) 261–286. [CrossRef] [Google Scholar]
  39. V. Lampaert, F. Al-Bender and J. Swevers, A generalized Maxwell-slip friction model appropriate for control purposes, in 2003 IEEE International Workshop on Workload Characterization (2003) 1170–1177. [Google Scholar]
  40. G.N. Mankiw and R. Reis, Sticky information versus sticky prices: a proposal to replace the New Keynesian Phillips curve. Quart. J.Econ. 117 (2002) 1295–1328. [CrossRef] [Google Scholar]
  41. A. Marshall, Principles of Economics. Macmillan (1890). [Google Scholar]
  42. P. Mirowski, More Heat Than Light. Cambridge University Press (1989). [CrossRef] [Google Scholar]
  43. J.F. Muth, Rational expectations and the theory of price movements. Econometrica 29 (1961) 315–335. [Google Scholar]
  44. B.A. Maćkowiak and M. Wiederholt, Business cycle dynamics under rational inattention. Rev. Econ. Stud. 82 (2015) 1502–1532. [Google Scholar]
  45. G.N. Mankiw, R. Reis and J. Wolfers, Disagreement about inflation expectations. NBER Macroecon. Annu. 18 (2003) 209–248. [Google Scholar]
  46. L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper. J. Appl. Math. Mech. 8 (1928) 85–106. [Google Scholar]
  47. D. Rachinskii, Equivalent combinations of stops. Automat. Remote Control 59 (1998) 1370–1378. [Google Scholar]
  48. J. Robinson, History versus equilibrium. Indian Econ. J. 21 (1974) 202–213. [Google Scholar]
  49. J. Rudd and K. Whelan, Can rational expectations sticky-price models explain inflation dynamics? Am. Econ. Rev. 96 (2006) 303–320. [Google Scholar]
  50. I. Rychlik, A new definition of the rainflow cycle counting method. Int. J. Fatigue 9 (1987) 119–121. [Google Scholar]
  51. A.M. Sbordone, A. Tambalotti, K. Rao and K.J. Walsh, Policy analysis using DSGE models: an introduction. Econ. Policy Rev. 16 (2010) 23–43. [Google Scholar]
  52. M. Setterfield, Should economists dispense with the notion of equilibrium? J. Post Keynes. Econ. 20 (1997) 47–76. [Google Scholar]
  53. C.A. Sims, Rational Inattention and Monetary Economics. Vol. 3 of Handbook of Monetary Economics, edited by B.M. Friedman, M. Woodford. Elsevier (2010) 155–181. [CrossRef] [Google Scholar]
  54. C.A. Sims, Implications of rational inattention. J. Monet. Econ. 50 (2003) 665–690. [Google Scholar]
  55. N.L. Stokey, The Economics of Inaction: Stochastic Control Models with Fixed Costs. Princeton University Press (2009). [Google Scholar]
  56. J.B. Taylor, The inflation/output variability trade-off revisited. Federal Reserve Bank of Boston Conf. Ser. 38 (1994) 21–38. [Google Scholar]
  57. T. Vinayagathasan, Inflation and economic growth: a dynamic panel threshold analysis for Asian economies. J. Asian Econ. 26 (2013) 31–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.