Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Modelling in Ecology, Epidemiology and Evolution
Article Number 23
Number of page(s) 24
DOI https://doi.org/10.1051/mmnp/2019044
Published online 18 March 2020
  1. V. Ajraldi, M. Pittavino and E. Venturino, Modeling herd behavior in population systems. Nonlin. Anal. Real World Appl. 12 (2011) 2319–2338. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl. 292 (2004) 364–380. [Google Scholar]
  3. P.A. Braza, Predator-prey dynamics with square root functional responses. Nonlin. Anal. Real World Appl. 13 (2012) 1837–1843. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Carr, Applications of Center Manifold Theory. SpringerVerlag, New York (1981). [Google Scholar]
  5. S.N. Chow and J.K. Hale, Methods of Bifurcation Theory. Springer, New York (1982). [CrossRef] [Google Scholar]
  6. E. Cagliero and E. Venturino, Ecoepidemics with infected prey in herd defense: the harmless and toxic cases. Int. J. Comput. Math. 93 (2016) 108–127. [Google Scholar]
  7. S. Djilali, Herd behavior in a predator-prey model with spatial diffusion: bifurcation analysis and Turing instability. J. Appl. Math. Comp. 58 (2017) 125–149. [CrossRef] [Google Scholar]
  8. S. Djilali, Impact of prey herd shape on the predator-prey interaction. Chaos Solitons Fractals 120 (2019) 139–148. [Google Scholar]
  9. S. Djilali, Effect of herd shape in a diffusive predator-prey model with time delay. J. Appl. Anal. Comput. 9 (2019) 638–654. [Google Scholar]
  10. S. Djilali and S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. (2019) DOI:10.1007/s10440-019-00291-z. [Google Scholar]
  11. S. Djilali, T.M. Touaoula and S.E.H. Miri, A Heroin epidemic model: very general non linear incidence, treat-age, and global stability. Acta Appl. Math. 152 (2017) 171–194. [Google Scholar]
  12. B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981). [Google Scholar]
  13. Y. Huang, F. Chen and L. Zhong, Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182 (2006) 672–683. [Google Scholar]
  14. G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 22 (2009) 1690–1693. [Google Scholar]
  15. W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231 (2006) 534–550. [Google Scholar]
  16. Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36 (1998) 389–406. [Google Scholar]
  17. C. Li, A diffusive Holling-Tanner prey-predator model with free boundary. Int. J. Biomath. 11 (2018) 1850066. [CrossRef] [Google Scholar]
  18. Z. Ma and S. Wang, A delay-induced predator-prey model with Holling type interaction functional response and habitat complexity. Nonlin. Dyn. 93 (2018) 1519–1544. [CrossRef] [Google Scholar]
  19. I. Martina and E. Venturino, Shape effects on herd behavior in ecological interacting population models. Math. Comput. Simul. 141 (2017) 40–55. [Google Scholar]
  20. Q. Meng and L. Yang, Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response. Nonlinear Anal. Real World Appl. 45 (2019) 401–413. [Google Scholar]
  21. A. Mousaoui, S. Bassaid and E.H.A. Dads, The impact of water level fluctuations on a delayed prey-predator model. Nonlin. Anal. Real World Appl. 21 (2015) 170–184. [CrossRef] [Google Scholar]
  22. K. Ryu, W. Ko and M. Haque, Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities. Nonlin. Dyn. 94 (2018) 1639–1656. [CrossRef] [Google Scholar]
  23. H.-B. Shi, W.-T. Li and G. Lin, Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response. Nonlin. Anal. Real World Appl. 11 (2010) 3711–3721. [CrossRef] [Google Scholar]
  24. Y. Song and X. Tang, Stability, steady-state bifurcation, and Turing patterns in predator-prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139 (2017) 371–404. [Google Scholar]
  25. Y. Song and X. Zou, Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point. Comput. Math. Appl. 67 (2014) 1978–1997. [Google Scholar]
  26. X. Tang and Y. Song, Bifurcation analysis and Turing instability in a diffusive predator prey model with herd behavior and hyperbolic mortality. Chaos Solit. Frac. 81 (2015) 303–314. [CrossRef] [Google Scholar]
  27. X. Tang and Y. Song, Turing-hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion. Nonlinear Dyn. 86 (2016) 73–89. [Google Scholar]
  28. E. Venturino, A minimal model for ecoepidemics with group defense. J. Biol. Syst. 19 (2011) 763–85. [Google Scholar]
  29. E. Venturino, Modeling herd behavior in population systems. Nonlin. Anal. Real World Appl. 12 (2013) 2319–38. [Google Scholar]
  30. E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Complex. 14 (2013) 37–47. [CrossRef] [Google Scholar]
  31. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York (1991). [Google Scholar]
  32. Z. Xu and Y. Song, Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality. Math. Meth. Appl. Sci. 38 (2015) 2994–3006. [CrossRef] [Google Scholar]
  33. C. Xu, S. Yuan and T. Zhang, Global dynamics of a predator-prey model with defense mechanism for prey. Appl. Math. Lett. 62 (2016) 42–48. [Google Scholar]
  34. R. Yang, M. Liu and C. Zhang, A diffusive predator-prey system with additional food and intra-specific competition among predators. Int. J. Biomath. 11 (2018) 1850060. [CrossRef] [Google Scholar]
  35. W. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior. Appl. Math. Model. 53 (2018) 433–446. [Google Scholar]
  36. S. Yuan, C. Xu and T. Zhang, Spatial dynamics in a predator-prey model with herd behavior. Chaos 23 (2013) 033102. [Google Scholar]
  37. J. Zhang, W. Li and X. Yan, Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models. Appl. Math. Model. 218 (2011) 1883–1893. [Google Scholar]
  38. H. Zhu and X. Zhang, Dynamics and patterns of a diffusive prey-predator system with a group defence for prey. Disc. Dyn. Nat. Soc. 2018 (2018) 6519696. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.