Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/mmnp/2019028 | |
Published online | 12 March 2020 |
- B. Appelbe, D. Flynn, H. McNamara, P. O’Kane, A. Pimenov, A. Pokrovskii, D. Rachinskii and A. Zhezherun, Rate-independent hysteresis in terrestrial hydrology. IEEE Control Syst. Mag. 29 (2009) 44–69. [CrossRef] [Google Scholar]
- B. Athukorallage and R. Iyer, Energy dissipation due to viscosity during deformation of a capillary surface subject to contact angle hysteresis. Physica B 435 (2014) 28–30. [CrossRef] [Google Scholar]
- B. Athukorallage and R. Iyer, Investigation of energy dissipation due to contact angle hysteresis in capillary effect. J. Phys.: Conf. Ser. 727 (2016) 012003. [CrossRef] [Google Scholar]
- B. Athukorallage, E. Aulisa, R. Iyer and L. Zhang, Macroscopic theory for capillary pressure hysteresis. Langmuir 31 (2015) 2390–2397. [CrossRef] [PubMed] [Google Scholar]
- H. Chen, A. Amirfazli and T. Tang, Modeling liquid bridge between surfaces with contact angle hysteresis. Langmuir 29 (2013) 3310–3319. [CrossRef] [PubMed] [Google Scholar]
- L. Cummings, S. Howison and J. King, Two-dimensional stokes and Hele-Shaw flows with free surfaces. Eur. J. Appl. Math. 10 (1999) 635–680. [Google Scholar]
- P.G. de Gennes, F. Brochard-Wyart and D. Quere, Capillarity and Wetting Phenomena: Drops Bubbles, Pearls, Waves. Springer (2003). [Google Scholar]
- W. Deen, Analysis of Transport Phenomena. Oxford University Press (1998). [Google Scholar]
- C. Extrand and Y. Kumagai, An experimental study of contact angle hysteresis. J. Colloid Interface Sci. 191 (1997) 378–383. [Google Scholar]
- R. Finn, Equilibrium capillary surfaces. Springer-Verlag (1986). [CrossRef] [Google Scholar]
- L. Gao and T.J. McCarthy, Contact angle hysteresis explained. Langmuir 22 (2006) 6234–6237. [CrossRef] [PubMed] [Google Scholar]
- I. Gelfand and S. Fomin, Calculus of Variations. Dover Publications (2000). [Google Scholar]
- R. Holsapple, R. Venkataraman and D. Doman, New, fast numerical method for solving two-point boundary-value problems. J. Guidance Control Dyn. 27 (2004) 301–304. [CrossRef] [Google Scholar]
- R. Iorio and V. Iorio, Fourier analysis and partial differential equations. Cambridge studies in advanced mathematics. Cambridge University Press (2001). [Google Scholar]
- H. Khalil, Nonlinear Systems, Prentice Hall PTR (2002). [Google Scholar]
- R. Ledesma-Aguilar, A. Hernández-Machado and I. Pagonabarraga, Three-dimensional aspects of fluid flows in channels. I. Meniscus and thin film regimes. Phys. Fluids 19 (2007) 102112. [CrossRef] [Google Scholar]
- W. Rugh, Linear System Theory, Prentice-Hall information and systems sciences series. Prentice Hall (1993). [Google Scholar]
- F.S. Sherman, Viscous flow, McGraw-Hill series in mechanical engineering, McGraw-Hill (1990). [Google Scholar]
- J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer, New York, 2 ed. (2002). [CrossRef] [Google Scholar]
- T.I. Vogel, Stability of a liquid drop trapped between two parallel planes. SIAM J. Appl. Math. 47 (1987) 516–525. [Google Scholar]
- D. White and J. Tallmadge, Theory of drag out of liquids on flat plates. Chem. Eng. Sci. 20 (1965) 33–37. [Google Scholar]
- P. Yan and A. Kassim, Mra image segmentation with capillary active contour, in Proceedings of the 8th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part I, MICCAI’05, Berlin, Heidelberg. Springer-Verlag (2005) 51–58. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.