Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 18
Number of page(s) 13
Published online 12 March 2020
  1. A. Aubret, M. Youssef, S. Sacanna and J. Palacci, Targeted assembly and synchronization of self-spinning microgears. Nat. Phys. 14 (2018) 1114–1118. [Google Scholar]
  2. M. Breakspear, S. Heitmann and A. Daffertshofer, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Human Neurosci. 4 (2010) 190. [CrossRef] [PubMed] [Google Scholar]
  3. D. Cumin and C.P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226 (2007) 181–196. [Google Scholar]
  4. A. Cenedese and C. Favaretto, On the synchronization of spatially coupled oscillators (2015). [Google Scholar]
  5. B. Ermentrout, An adaptive model for synchrony in the firefly pteroptyx malaccae. J. Math. Biol. 29 (1991) 571–585. [Google Scholar]
  6. B. Ermentrout and J. Rinzel, Beyond a pacemaker’s entrainment limit: phase walk-through. Am. J. Physiol. 246 (1984) R102–R106. [Google Scholar]
  7. G. Filatrella, A.H. Nielsen and N.F. Pedersen, Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61 (2008) 485–491. [CrossRef] [EDP Sciences] [Google Scholar]
  8. F.E. Hanson, Comparative studies of firefly pacemakers. Vol. 37 of Federation proceedings (1978) 2158–2164. [PubMed] [Google Scholar]
  9. Z. Jiang and M. McCall, Numerical simulation of a large number of coupled lasers. J. Opt. Soc. Am. B 10 (1996) 155. [Google Scholar]
  10. T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski and Y. Maistrenko, Imperfect chimera states for coupled pendula. Sci. Rep. 4 (2014) 6379. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Kuramoto, International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30 (1975) 420. cited By 14. [CrossRef] [Google Scholar]
  12. X. Li and P. Rao, Synchronizing a weighted and weakly-connected Kuramoto-oscillator digraph with a pacemaker. IEEE Trans. Circ. Syst. I: Regular Papers 62 (2015) 899–905. [CrossRef] [Google Scholar]
  13. S. Leonardy, G. Freymark, S. Hebener, E. Ellehauge and L. Søgaard-Andersen, Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J. 26 (2007) 4433–4444. [Google Scholar]
  14. Y.L. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko and P.A. Tass, Multistability in the Kuramoto model with synaptic plasticity. Phys. Rev. E 75 (2007). [Google Scholar]
  15. N. Motee and Q. Sun, Sparsity measures for spatially decayingsystems (2014). [Google Scholar]
  16. R.K. Niyogi and L.Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys. Rev. E 80 (2009). [Google Scholar]
  17. G. Ódor and B. Hartmann, Heterogeneity effects in power grid network models. Phys. Rev. E 98 (2018) 022305. [PubMed] [Google Scholar]
  18. S. Olmi, A. Navas, S. Boccaletti and A. Torcini, Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 90 (2014) 042905. [Google Scholar]
  19. G.H Paissan and D.H Zanette, Synchronization and clustering of phase oscillators with heterogeneous coupling. Europhys. Lett. 77 (2007) 20001. [Google Scholar]
  20. T.K.D.M. Peron, P. Ji, F.A. Rodrigues and J. Kurths, Effects of assortative mixing in the second-order Kuramoto model. Phys. Rev. E 91 (2015) 052805. [Google Scholar]
  21. M. Rohden, A. Sorge, M. Timme and D. Witthaut, Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109 (2012) 064101. [CrossRef] [PubMed] [Google Scholar]
  22. F. Salam, J. Marsden and P. Varaiya, Arnold diffusion in the swing equations of a power system. IEEE Trans. Circ. Syst. 31 (1984) 673–688. [Google Scholar]
  23. J. Sieber and T. Kalmár-Nagy, Stability of a chain of phase oscillators. Phys. Rev. E 84 (2011) 016227. [Google Scholar]
  24. D. Shepard, A two-dimensional interpolation function for irregularly-spaced data. Proceedings ofthe 1968 23rd ACM national conference. ACM (1968) 517–524. [CrossRef] [Google Scholar]
  25. H.A. Tanaka, A.J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses. Physica D 100 (1997) 279–300. [Google Scholar]
  26. B.R. Trees, V. Saranathan and D. Stroud, Synchronization in disordered Josephson junction arrays: small-world connections and the Kuramoto model. Phys. Rev. E 71 (2005). [Google Scholar]
  27. L. Tumash, S. Olmi and E. Schöll, Effect of disorder and noise in shaping the dynamics of power grids. Europhys. Lett. 123 (2018) 20001. [Google Scholar]
  28. B. Tóth, Nauticle: a general-purpose particle-based simulation tool. Preprint abs/1710.08259 (2018). [Google Scholar]
  29. T.J. Walker, Acoustic synchrony: two mechanisms in the snowy tree cricket. Science 166 (1969) 891–894. [Google Scholar]
  30. H. Wu, L. Kang, Z. Liu and M. Dhamala, Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Sci. Rep. 8 (2018) 15521. [CrossRef] [PubMed] [Google Scholar]
  31. C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng and S. Guan, Synchronization of phase oscillators with frequency-weighted coupling. Sci. Rep. 6 (2016) 21926. [CrossRef] [PubMed] [Google Scholar]
  32. D. Yuan, F. Lin, L. Wang, D. Liu, J. Yang and Y. Xiao, Multistable states in a system of coupled phase oscillators with inertia. Sci. Rep. 7 (2017) 42178. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.