Math. Model. Nat. Phenom.
Volume 15, 2020
Systems with Hysteresis and Switching
Article Number 25
Number of page(s) 18
Published online 10 April 2020
  1. S. Adly, H. Attouch and A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction. Vol. 12 of Nonsmooth Mechanics and Analysis, edited by P. Alart, O. Maisonneuve, R.T. Rockafellar. Advances in Mechanics and Mathematics. Springer, Boston, MA (2006). [Google Scholar]
  2. H. Anton and C. Rorres, Elementary linear algebra: applications version, 10th edition. John Wiley & Sons (2010). [Google Scholar]
  3. M. Arriaga and H. Waisman, Stability analysis of the phase-field method for fracture with a general degradation function and plasticity induced crack generation. Mech. Mater. 116 (2018) 33–48. [Google Scholar]
  4. I. Blechman, Paradox of fatigue of perfect soft metals in terms of micro plasticity and damage. Int. J. Fatigue 120 (2019) 353–375. [Google Scholar]
  5. C. Bouby, G. de Saxce and J.-B. Tritsch, A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening. Int. J. Solids Struct. 43 (2006) 2670–2692. [Google Scholar]
  6. R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao and M.Y. Ren, Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. J. Mech. Des. 139 (2017) 071404. [CrossRef] [Google Scholar]
  7. C. Castang and M. Valadier, Convex analysis and measurable mulifunctions. Vol. 580 of Lecture notes in mathematics. Springer-Verlag, Berlin, Heidelberg (1977). [Google Scholar]
  8. K. Deimling, Multivalued differential equations. de Gruyter, Berlin, New York (1992). [Google Scholar]
  9. I. Gudoshnikov and O. Makarenkov, Stabilization of quasistatic evolution of elastoplastic systems subject to periodic loading. Preprint (2019). [Google Scholar]
  10. P. Jordan, A.E. Kerdok, R.D. Howe and S. Socrate, Identifying a minimal rheological configuration: a tool for effective and efficient constitutive modeling of soft tissues. J. Biomech. Eng. Trans. ASME 133 (2011) 041006. [CrossRef] [Google Scholar]
  11. P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattotoscho (1996). [Google Scholar]
  12. M. Kunze and M.D.P. Monteiro Marques, An introduction to Moreau’s sweeping process. Impacts in mechanical systems (Grenoble, 1999). Vol. 551 of Lecture notes in Physics. Springer, Berlin (2000) 1–60. [CrossRef] [Google Scholar]
  13. C.W. Li, X. Tang, J.A. Munoz, J.B. Keith, S.J. Tracy, D.L. Abernathy and B. Fultz, Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 107 (2011) 195504. [CrossRef] [PubMed] [Google Scholar]
  14. J.-J. Moreau, On unilateral constraints, friction and plasticity. New variational techniques in mathematical physics (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1973). Edizioni Cremonese, Rome (1974) 171–322. [Google Scholar]
  15. J. Zhang, B. Koo, Y. Liu, J. Zou, A. Chattopadhyay and L. Dai, A novel statistical spring-bead based network model for self-sensing smart polymer materials. Smart Mater. Struct. 24 (2015) 085022. [Google Scholar]
  16. N. Zouain and R. SantAnna, Computational formulation for the asymptotic response of elastoplastic solids under cyclic loads. Eur. J. Mech. A: Solids 61 (2017) 267–278. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.