Growth phenomena
Free Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Growth phenomena
Article Number 5
Number of page(s) 25
DOI https://doi.org/10.1051/mmnp/2019025
Published online 14 February 2020
  1. D. Aharonov and H.S. Shapiro, Domains on which analytic functions satisfy quadrature identities. J. Anal. Math 30 (1976) 39–73. [CrossRef] [Google Scholar]
  2. N. Aronsajn and W.F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part. J. Analyse Math. 5 (1956) 321–388. [CrossRef] [Google Scholar]
  3. B. Beckermann, Complex Jacobi Matrices. J. Comp. Appl. Math. 127 (2001) 17–65. [CrossRef] [Google Scholar]
  4. A. Böttcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia, 2005. [CrossRef] [Google Scholar]
  5. C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Vol. 155 of Encyclopedia of Mathematics and its Applications, Second Edition. Cambridge Univ. Press, Cambridge (2014). [Google Scholar]
  6. P. Duren, Polynomials orthogonal over a curve. Michigan Math. J. 12 (1965) 313–316. [CrossRef] [Google Scholar]
  7. J. Favard, Sur les polynomes de Tchebicheff. C. R. Acad. Sci. Paris 200 (1935) 2052–2053. [Google Scholar]
  8. B. Gustafsson and M. Putinar, The exponential transform: a renormalized Riesz potential at crirical exponent. Indiana Univ. Math. J. 52 (2003) 527–568. [CrossRef] [Google Scholar]
  9. B. Gustafsson and M. Putinar, Hyponormal Quantization of Planar Domains. Vol. 2199 of Lect. Notes Math. Springer, Cham, Switzerland (2017). [CrossRef] [Google Scholar]
  10. B. Gustafsson and M. Putinar, A field theoretic operator model and Cowen-Douglas class. Banach J. Math. 13 (2019) 338–358. [CrossRef] [Google Scholar]
  11. B. Gustafsson, R. Teoderscu and A. Vasil’ev, Classical and Stochastic Laplacian growth, Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2014). [CrossRef] [Google Scholar]
  12. D. Khavinson and E. Lundberg, Linear Holomorphic Partial Differential Equations and Classical Potential Theory. Vol. 232 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2018). [CrossRef] [Google Scholar]
  13. D. Khavinson and N. Stylianopoulos, Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. Around the Research of Vladimir Maz’ya II S. Partial Differential Equations. Springer, Berlin (2009) 219–228. [Google Scholar]
  14. F. Marcellán and R. Álvarez-Nodarse, On the “Favard Theorem” and its extensions. J. Computat. Appl. Math. 127 (2001) 231–254. [CrossRef] [Google Scholar]
  15. M. Martin and M. Putinar, Lectures on Hyponormal Operators. Birkhäuser Verlag, Basel (1989). [CrossRef] [Google Scholar]
  16. M. Mineev-Weinstein, M. Putinar and R. Teodorescu, Random matrices in 2D, Laplacian growth and operator theory. J. Phys. A 41 (2008) 1–74. [CrossRef] [Google Scholar]
  17. M. Putinar and N. Stylianopoulos, Finite-term relations for planar orthogonal polynomials. Compl. Anal. Oper. Theory 1 (2007) 447–456. [CrossRef] [Google Scholar]
  18. T. Savina, B. Sternin and V. Shatalov, On a minimal element for a family of bodies producing the same external gravitational field. Appl. Anal. 84 (2005) 649–668. [Google Scholar]
  19. H.S. Shapiro, The Schwarz Function and its Generalization to Higher Dimensions. In Vol. 9 of University of Arkansas Lecture Notes in the Mathematical Sciences. John Wiley & Sons Inc., New York (1992). [Google Scholar]
  20. G. Szegö, A problem concerning orthogonal polynomials. Trans. Amer. Math. Soc. 37 (1935) 196–206. [CrossRef] [Google Scholar]
  21. R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin and P. Wiegmann, Normal random matrix ensemble as a growth problem. Nucl. Phys. B 704 (2005) 407–444. [Google Scholar]
  22. A. Varchenko and P. Etingof, Why the Boundary of a Round Drop Becomes a Curve of Order Four. American Mathematical Society AMS University Lecture Series. Providence, Rhode Island (1992). [Google Scholar]
  23. P. Wiegmann and A. Zabrodin, Conformal maps and integrable hierarchies. Comm. Math. Phys. 213 (2000) 523–538. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.