Growth phenomena
Free Access
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Growth phenomena
Article Number 4
Number of page(s) 12
DOI https://doi.org/10.1051/mmnp/2019046
Published online 14 February 2020
  1. T. Alarcón, H.M. Byre and P.K. Main, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225 (2003) 257–274. [CrossRef] [PubMed] [Google Scholar]
  2. W. Alt, Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9 (1980) 147–177. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele and A.M. Thompson, Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2 (2000) 129–154. [CrossRef] [Google Scholar]
  4. P.R. Armsworth and L. Bode, The consequences of non-passive advection and directed motion for population dynamics. Proc. R. Soc. Lond. A 455 (1999) 4045–60. [CrossRef] [Google Scholar]
  5. P.R. Armsworth and J.E. Roughgarden, The impact of directed versus random movement on population dynamics and biodiversity patterns. Am. Nat. 165 (2005) 449–465. [CrossRef] [PubMed] [Google Scholar]
  6. J.A. Aronovitz and D.R. Nelson, Universal features of polymer shapes. J. Physique 47 (1986) 1445–1456. [CrossRef] [Google Scholar]
  7. F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments. Can. Appl. Math. Quar. 3 (1995) 379–397. [Google Scholar]
  8. E. Ben-Jacob and H. Levine, The artistry of nature. Nature 409 (2001) 985–986. [Google Scholar]
  9. H.C. Berg, Motile Behavior of Bacteria. Phys. Today 53 (2000) 24–29. [Google Scholar]
  10. S. Bianchi, L. Biferale, A. Celani and M. Cencini, On the evolution of particle-puffs in turbulence. Eur. J. Mech. B Fluids 55 (2016) 324–329. [Google Scholar]
  11. M. Bishop and C.J. Saltiel, Polymer shapes in two, four, and five dimensions. J. Chem. Phys. 88 (1988) 3976–3980. [Google Scholar]
  12. R. Brout, Statistical mechanical theory of a random ferromagnetic system. Phys. Rev. 115 (1959) 824–835. [Google Scholar]
  13. R.S. Cantrell, C. Cosner and Y. Lou, Movement toward better environments and the evolution of rapid diffusion. Math. Biosci. 204 (2006) 199–214. [Google Scholar]
  14. F.A.C.C. Chalub, P.A. Markowich, B. Perthame and C. Schmeiser, Kinetics models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142 (2014) 123–141. [CrossRef] [Google Scholar]
  15. A. Chauviere, T. Hillen and L. Preziosi, Modeling cell movement in anisotropic and heterogeneous network tissues. Netw. Heterogen. Media 2 (2007) 333–357. [CrossRef] [Google Scholar]
  16. E.A. Codling, M.J. Plank and S. Benhamou, Random walk models in biology. J. R. Soc. Interface 5 (2008) 813–834. [CrossRef] [PubMed] [Google Scholar]
  17. E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol. 62 (2011) 569–588. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. S. Dewhirst and F. Lutscher, Dispersal in heterogeneous habitats: thresholds, spatial scales, and approximate rates of spread. Ecology 90 (2009) 1338–1345. [CrossRef] [PubMed] [Google Scholar]
  19. R.B. Dickinson, A generalized transport model for biased cell migration in an anisotropic environment. J. Math. Biol. 40 (2000) 97–135. [CrossRef] [PubMed] [Google Scholar]
  20. R.B. Dickinson, S. Guido and R.T. Tranquillo, Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22 (1994) 342–356. [CrossRef] [PubMed] [Google Scholar]
  21. H.W. Diehl and E. Eisenriegler, Universal shape ratios for open and closed random walks: exact results for all d. J. Phys. A: Math. Gen. 22 (1989) L87–L91. [CrossRef] [Google Scholar]
  22. Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatiotemporal mechanics. J. Math. Biol. 51 (2005) 595–615. [CrossRef] [PubMed] [Google Scholar]
  23. C. Di Franco, E. Beccari, T. Santini, G. Pisaneschi and G. Tecce, Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiol. 2 (2002) 1–15. [CrossRef] [PubMed] [Google Scholar]
  24. V.J. Emery, Critical properties of many-component systems. Phys. Rev. B 11 (1975) 239–247. [Google Scholar]
  25. P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. 3 (2003) 362–374. [CrossRef] [PubMed] [Google Scholar]
  26. G. Gaspari, J. Rudnick and A Beldjenna, The shapes of open and closed random walks: a ld expansion. J. Phys. A: Math. Gen. 20 (1987) 3393–3414. [CrossRef] [Google Scholar]
  27. N.A. Hill and D.P. Häder, A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186 (1997) 503–526. [CrossRef] [PubMed] [Google Scholar]
  28. T. Hillen, M5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53 (2006) 585–616. [CrossRef] [PubMed] [Google Scholar]
  29. T. Hillen and K.J. Painter, Transport and Anisotropic Diffusion Models for Movement in Oriented Habitat, in Dispersal, Individual Movement and Spatial Ecology. Vol 2071 of Lecture Notes in Mathematics. Springer, Berlin (2013) 177–222. [CrossRef] [Google Scholar]
  30. R.W. van Kirk and M.A. Lewis, Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59 (1997) 107–137. [Google Scholar]
  31. W. Kuhn, Über die Gestalt fadenförmiger Moleküle in Lösungen, Kolloid-Z. 68 (1934) 2–15. [CrossRef] [Google Scholar]
  32. D. Losic, M. Aw, A. Santos, K. Gulati and M. Bariana, Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin. Drug Deliv. 12 (2015) 103–127. [CrossRef] [PubMed] [Google Scholar]
  33. N.H. Mendelson, Helical growth of Bacillus subtilis: a new model of cell growth. Proc. Natl. Acad. Sci. USA 73 (1976) 1740–1744. [CrossRef] [Google Scholar]
  34. Z. Mokhtari et al., Automated characterization and parameter-free classification of cell tracks based on local migration behavior. PLoS One 8 (2013) e80808. [CrossRef] [PubMed] [Google Scholar]
  35. T.J. Pedley and J.O. Kessler, A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212 (1990) 155–182. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. K.J. Painter, Modelling cell migration strategies in the extracellular matrix. J. Math. Biol. 58 (2009) 511–543. [CrossRef] [PubMed] [Google Scholar]
  37. C.S. Patlack, Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953) 311–338. [Google Scholar]
  38. R. Rudner, O. Martsinkevich, W. Leung and E.D. Jarvis, Classification and genetic characterization of pattern forming Bacilli. Mol. Microbiol. 27 (1998) 687–703. [CrossRef] [PubMed] [Google Scholar]
  39. J. Rudnick and G. Gaspari, The aspherity of random walks. J. Phys. A 19 (1986) L191–L194. [CrossRef] [Google Scholar]
  40. B. Salhi and N. Mendelson, Patterns of gene expression in Bacillus subtilis colonies. J. Bacteriol. 175 (1993) 5000–5008. [CrossRef] [PubMed] [Google Scholar]
  41. M. Sarris et al., Inammatory chemokines direct and restrict leukocyte migration within live tissues as glycan-bound gradients. Curr. Biol. 22 (2012) 2375–2382. [CrossRef] [PubMed] [Google Scholar]
  42. S.J. Sciutto, Study of the shape of random walks. J. Phys. A Math. Gen. 27 (1994) 7015–7034. [Google Scholar]
  43. J.A. Shapiro, The use of Mudlac transposons as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces. J. Gen. Microbiol. 130 (1984) 1169–1181. [PubMed] [Google Scholar]
  44. J.A. Shapiro, Scanning electron microscope study of Pseudomonas putida colonies. J. Bacteriol. 164 (1985) 1171–1181. [CrossRef] [PubMed] [Google Scholar]
  45. J.A. Shapiro, The significance of bacterial colony patterns. Bio Essays 17 (1995) 597–607. [Google Scholar]
  46. M.F. Shlesinger and B. West, Random Walks and their Applications in the Physical and Biological Sciences. Vol. 109 of AIP Conference Proceedings. AIP, New York (1984). [Google Scholar]
  47. K. Šolc and W.H. Stockmayer, Shape of a Random-Flight Chain. J. Chem. Phys. 54 (1994) 2756–2757. [Google Scholar]
  48. K. olc, Shape of a Random Flight Chain. J. Chem. Phys. 55 (1971) 335–344. [Google Scholar]
  49. R.V.V. Vincent and N.A. Hill, Bioconvection in a suspension of phototactic algae. J. Fluid Mech. 327 (1996) 343–371. [Google Scholar]
  50. Q. Wang et al., Recent advances on smart TiO2 nanotubeplatforms for sustainable drug delivery applications. Int. J. Nanomed. 12 (2017) 151–165. [CrossRef] [Google Scholar]
  51. B.P. Yurk, Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility. J. Math. Biol. 77 (2017) 27–54. [CrossRef] [PubMed] [Google Scholar]
  52. M. Weber et al., Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339 (2013) 328–332. [Google Scholar]
  53. G. Wei and X. Zhu, Shapes and sizes of arbitrary random walks at O(1∕d3) II. Asphericity and prolateness parameters. Physica A 237 (1997) 423–440. [Google Scholar]
  54. A. Zakharchenko, N. Guz, A.M. Laradji, E. Katz and S. Minko, Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 1 (2018) 73–81. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.