Growth phenomena
Free Access
Review
Issue
Math. Model. Nat. Phenom.
Volume 15, 2020
Growth phenomena
Article Number 3
Number of page(s) 24
DOI https://doi.org/10.1051/mmnp/2019033
Published online 14 February 2020
  1. M. Adler and J. Moser, On a class of polynomials connected with the Korteveg-de Vries equation. Commun. Math. Phys. 61 (1978) 1–30. [CrossRef] [Google Scholar]
  2. Y. Ameur, H. Hedenmalm and N. Makarov, Random normal matrices and Ward identities. Ann. Probab. 43 (2015) 1157–1201. [Google Scholar]
  3. Y. Ameur, H.K. Hedenmalm and N. Makarov, Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159 (2011) 31–81. [CrossRef] [Google Scholar]
  4. D. Applebaum, Levy processes – from probability to finance and quantum groups. Notices AMS 51 (2004) 1336–1347. [Google Scholar]
  5. D. Beliaev and S. Smirnov, Harmonic measure and SLE. Commun. Math. Phys. 290 (2009) 577–595. [CrossRef] [Google Scholar]
  6. D. Beliaev, B. Duplantier and M. Zinsmeister, Integral means spectrum of whole-plane SLE. Commun. Math. Phys. 353 (2017) 119–133. [CrossRef] [Google Scholar]
  7. D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman and C. Tang, Viscous flows in two dimensions. Rev. Mod. Phys. 58 (1986) 977. [Google Scholar]
  8. Y. Berest and I. Loutsenko, Huygens principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries Equation. Commun. Math. Phys 190 (1997) 113–132. [CrossRef] [Google Scholar]
  9. Y.Y. Berest and Y.A. Molchanov, Fundamental solutions for partial differential equations with reflection group invariance. J. Math. Phys. 36 (1995) 4324–4339. [Google Scholar]
  10. Y.Y. Berest and A.P. Veselov, Huygens’ principle and integrability. Russ. Math. Surv. 49 (1994) 5–77. [CrossRef] [Google Scholar]
  11. A. Boutet de Monvel, I. Loutsenko and O. Yermolayeva, New applications of quantum algebraically integrable systems in fluid dynamics. Anal. Math. Phys. 3 (2013) 277–294. [CrossRef] [Google Scholar]
  12. J.L. Burcnall and T.W. Chaundy, A set of differential equations which can be solved by polynomials. Proc. London Soc (1929). [Google Scholar]
  13. O.A. Chalykh, K.L. Styrkas and A.P. Veselov, Algebraic integrability for Schrodinger equations and finite reflection groups. Theor. Math. Phys. 94 (1993) 253–275. [Google Scholar]
  14. O.A. Chalykh, M.V. Feigin and A.P.Veselov, New integrable generalizations of Calogero- Moser quantum problem. J. Math. Phys. 39 (1998) 695–703. [Google Scholar]
  15. O.A. Chalykh, M.V. Feigin and A.P. Veselov, Multidimensional Baker-Akhiezer functions and Huygens’ principle. Commun. Math. Phys. 206 (1999) 533–566. [CrossRef] [Google Scholar]
  16. J. Cardy, SLE for theoretical physicists. Ann. Phys. 318 (2005) 81–118. [Google Scholar]
  17. L. Carleson and N. Makarov, Laplacian path models. J. Anal. Math. 87 (2002) 103–150. [CrossRef] [Google Scholar]
  18. D. Crowdy, Quadrature domains and fluid dynamics, In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 113–129. [CrossRef] [Google Scholar]
  19. S.P. Dawson and M. Mineev-Weinstein, Long-time behavior of the N-finger solution of the Laplacian growth equation. Physica D 73 (1994) 373–387. [Google Scholar]
  20. B. Duplantier, Conformally invariant fractals and potential theory. Phys. Rev. Lett. 84 (2000) 1363–1367. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. B. Duplantier, T.P. Chi Nguyen, T.T. Nga Nguyen and M. Zinsmeister, The coefficient problem and multifractality of whole-plane SLE and LLE. Ann. Henri Poincare 16 (2015) 1311–1395. [CrossRef] [Google Scholar]
  22. P.I. Etingof, Integrability of filtration problems with a moving boundary. Dokl. Akad. Nauk SSSR 313 (1990) 42–47. [Google Scholar]
  23. A. Eremenko and E. Lundberg, Non-algebraic quadrature domains. Potent. Anal. 38 (2013) 787–804. [CrossRef] [Google Scholar]
  24. J. Escher and G. Simonett, On Hele–Shaw models with surface tension. Math. Res. Lett. 3 (1996) 467–474. [CrossRef] [Google Scholar]
  25. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov and A. Orlov, Matrix models of 2D gravity and Toda theory. Nucl. Phys. B 357 (1991) 565–618. [Google Scholar]
  26. I.A. Gruzberg, Stochastic geometry of critical curves, Schramm–Loewner evolutions and conformal field theory. J. Phys. A: Math. Gen. 39 (2006) 12601–12655. [CrossRef] [Google Scholar]
  27. B. Gustafsson and H.S. Shapiro, What is a quadrature domain? In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 1–25. [CrossRef] [Google Scholar]
  28. B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and stochastic Laplacian growth. Advances in Mathematical Fluid Mechanics. Birkhauser/Springer, Cham (2014). [CrossRef] [Google Scholar]
  29. T. Halsey, Diffusion limited aggregation: a model for pattern formation. Physics Today 53 (2000) 36. [Google Scholar]
  30. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33 (1986) 1141. [Google Scholar]
  31. T.C. Halsey, K. Honda and B. Duplantier, Multifractal dimensions for branched growth. J. Stat. Phys. 85 (1996) 681–743. [Google Scholar]
  32. J. Harnad, I. Loutsenko, O. Yermolayeva, Constrained reductions of 2D dispersionless Toda Hierarchy, Hamiltonian Structure and Interface Dynamics. J. Math. Phys. 46 (2005) 112701. [Google Scholar]
  33. M.B. Hastings, Exact Multifractal Spectra for Arbitrary Laplacian Random Walks. Phys. Rev. Lett. 88 (2002). [Google Scholar]
  34. M.B. Hastings and L.S. Levitov, Laplacian growth as one-dimensional turbulence. Physica D 116 (1998) 244–252. [Google Scholar]
  35. S.D. Howison, I. Loutsenko and J.R. Ockendon, A class of exactly solvable free-boundary inhomogeneous porous medium flows. Appl. Math. Lett. 20 (2007) 93–97. [Google Scholar]
  36. L. Igor and V. Spiridonov, Soliton solutions of integrable hierarchies and Coulomb plasmas. J. Stat. Phys. 99 (2000). [Google Scholar]
  37. D.D. Joseph and J.C. Saut, Short wave instabilities and ill-posed initial value problems. Theoret. Comp. Fluid Dyn. 1 (1990) 191–227. [CrossRef] [Google Scholar]
  38. L. Karp, Construction of quadrature domains in ℝn from quadrature domains in ℝ2. Complex Var. Elliptic Eq. 17 (1992) 179–188. [Google Scholar]
  39. L. Karp and E. Lundberg, A four-dimensional Neumann ovaloid. Ark. Mat. 55 (2017) 185–198. [CrossRef] [Google Scholar]
  40. D. Khavinson, M. Mineev-Weinstein and M. Putinar, Planar elliptic growth. Complex Anal. Oper. Theory 3 (2009) 425–451. [CrossRef] [Google Scholar]
  41. I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann and A. Zabrodin, The τ-function for analytic curves. MSRI Publ. 40 (2001) 285–299 [Random Matrix Models and Their Applications, Ed. by P. Bleher, A. Its. Cambridge University Press, 2001]. [Google Scholar]
  42. I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Laplacian growth and Whitham equations of soliton theory. Physica D 198 (2004) 1–28. [Google Scholar]
  43. G.F. Lawler, Conformally invariant processes in the plane. Mathematical Surveys and Monographs 114, Am. Math. Soc., Providence, RI (2005). [Google Scholar]
  44. G.F. Lawler, Conformal invariance and 2D statistical physics. Bull. Am. Math. Soc. 46 (2009) 35–54. [CrossRef] [Google Scholar]
  45. I. Loutsenko, The variable coefficient Hele–Shaw problem, Integrability and quadrature identities. Commun. Math. Phys 268 (2006) 465–479. [CrossRef] [Google Scholar]
  46. I. Loutsenko, SLEκ: correlation functions in the coefficient problem. J. Phys. A: Math. Theor. 45 (2012) 275001. [CrossRef] [Google Scholar]
  47. I.M. Loutsenko and V.P. Spiridonov, Self-similar potentials and Ising models. Pis’ma v ZhETF (JETP Lett.) 66 (1997) 747–753. [Google Scholar]
  48. I. Loutsenko and V. Spiridonov, Spectral self-similarity, one-dimensional Ising chains and random matrices. Nucl. Phys. B 538 (1999) 731–758. [Google Scholar]
  49. I. Loutsenko and O. Yermolaeva, Non-Laplacian growth: exact results. Physica D 235 (2007) 56–61. [Google Scholar]
  50. I. Loutsenko and O. Yermolayeva, Stochastic Loewner Evolutions, Fuchsian Systems and Orthogonal Polynomials. Preprint arXiv:1904.01472. [Google Scholar]
  51. I. Loutsenko and O. Yermolayeva, On exact multi-fractal spectrum of the whole-plane SLE. J. Stat. Mech. (2013) DOI: 10.1088/1742-5468/2013/04/P4007. [Google Scholar]
  52. I. Loutsenko and O. Yermolayeva, New exact results in spectra of stochastic Loewner evolution. J. Phys. A 47 (2014) 165202. [CrossRef] [Google Scholar]
  53. I. Loutsenko, O. Yermolayeva and M. Zinsmeister, On a competitive model of Laplacian growth. J. Stat. Phys. 145 (2011) 919–931. [Google Scholar]
  54. E. Lundberg, Laplacian growth, elliptic growth, and singularities of the Schwarz potential. J. Phys. A: Math. Theor. 44 (2011) 135202. [CrossRef] [Google Scholar]
  55. J. Mathiesen, I. Procaccia, H.L. Swinney and M. Thrasher, The universality class of diffusion-limited aggregation and viscous fingering. Europhys. Lett. 76 (2006) 257–263. [Google Scholar]
  56. R. McDonald and M. Mineev-Weinstein, Poisson growth. Anal. Math. Phys. 5 (2015) 193–205. [CrossRef] [Google Scholar]
  57. M. Mineev-Weinstein, Selection of the Saffman-Taylor finger width in the absence of surface tension: an exact result. Phys. Rev. Lett. 80 (1998) 2113. [Google Scholar]
  58. M. Mineev-Weinstein, P.B. Wiegmann and A. Zabrodin, Integrable structure of interface dynamics. Phys. Rev. Lett. 84 (2000) 5106–5109. [CrossRef] [PubMed] [Google Scholar]
  59. M. Mineev-Weinstein, M. Putinar and R. Teodorescu, Random matrix theory in 2D, Laplacian growth, and operator theory. J. Phys. A: Math. Theor. 41 (2008). [CrossRef] [Google Scholar]
  60. T. Miwa, M. Jimbo and E. Date, Solitons: Differential Equations, Symmetries and Infinite-Dimensional Algebras. Cambridge University Press (2000). [Google Scholar]
  61. P. Oikonomou, I. Rushkin, I.A. Gruzberg and L.P. Kadanoff, Global properties of stochastic Loewner evolution driven by Lévy processes. J. Stat. Mech. 2008 (2008) P01019. [Google Scholar]
  62. P.J. Polubarinova-Kotschina, On the displacement of the oilbearing contour. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 47 (1945) 250–254. [Google Scholar]
  63. S. Richardson, Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid Mech. 56 (1972) 609–618. [Google Scholar]
  64. S. Rohde and M. Zinsmeister, Some remarks on Laplacian growth. Topol. Appl. 152 (2005) 26–43. [Google Scholar]
  65. I. Rushkin, P. Oikonomou, L.P. Kadanoff and I.A. Gruzberg, Stochastic Loewner evolution driven by Levy processes. J. Stat. Mech. 2006 (2006) P01001. [Google Scholar]
  66. P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. A: Math. Phys. Eng. Sci. 245 (1958) 312–329. [Google Scholar]
  67. G. Selander, Two deterministic growth models related to diffusion-limited aggregation. Thesis. KTH, Stockholm (1999). [Google Scholar]
  68. H.S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions. Arkansas Lecture Notes in the Mathematical Sciences 9, John Wily & Sons, Inc., New York (1992). [Google Scholar]
  69. A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. American Mathematical Society, University Lecture Series, 3 (1994). [Google Scholar]
  70. A. Zabrodin, New applications of non-hermitian random matrices. Ann. Henri Poincare 4 (2003) S851–S861. [CrossRef] [Google Scholar]
  71. A. Zabrodin, Growth of fat slits and dispersionless KP hierarchy. J. Phys. A: Math. Theor. 42 (2009) 497–514. [CrossRef] [Google Scholar]
  72. A. Zabrodin, Canonical and grand canonical partition functions of Dyson gases as tau-functions of integrable hierarchies and their fermionic realization. Complex Anal. Operat. Theory 4 (2010) 497–514. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.