Growth phenomena
Free Access
Math. Model. Nat. Phenom.
Volume 15, 2020
Growth phenomena
Article Number 2
Number of page(s) 11
Published online 24 January 2020
  1. O. Alekseev and M. Mineev-Weinstein, Theory of stochastic Laplacian growth. J. Stat. Phys. 168 (2017) 68–91. [Google Scholar]
  2. R. Cafiero, A. Gabrielli, M. Marsili, L. Pietronero and L. Torosantucci, Laplacian Fractal Growth in Media with Quenched Disorder. Phys. Rev. Lett. 79 (1997) 1503. [Google Scholar]
  3. V. Cornette, P.M. Cantres, A.J. Ramirez-Pastor and F. Nieto, Diffusion-limited aggregates grown on nonuniform substrates. Physica A 392 (2013) 5879. [Google Scholar]
  4. M. Eden, A Two-dimensional Growth Process. In Vol. 4 of Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1961) 223–239. [Google Scholar]
  5. B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and Stochastic Laplacian Growth. Springer, Basel (2014). [Google Scholar]
  6. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33 (1986) 1141. [Google Scholar]
  7. H.J.S. Hele-Shaw, The Flow of Water. Nature 58 (1898) 34–36. [Google Scholar]
  8. A. Hernàndez-Machado, J. Soriano, A. M. Lacasta, M.A. Rodríguez, L. Ramírez-Piscina and J. Ortín, Interface roughening in Hele-Shaw flows with quenched disorder: Experimental and theoretical results. Europhys. Lett. 55 (2001) 194–200. [Google Scholar]
  9. M.H. Jensen, A. Levermann, J. Mathiesen and I. Procaccia, Multifractal structure of the harmonic measure of diffusion-limited aggregates. Phys. Rev. E 65 (2002) 046109. [Google Scholar]
  10. S.M. Kogan and A.Y. Shul’man, Theory of fluctuations in a nonequilibrium. JETP 29 (1969) 467. [Google Scholar]
  11. S.M. Kogan and A.Y. Shul’man, Theory of fluctuations in a nonequilibrium electron gas. Zh. Eksp. Teor. Fiz. 56 (1969) 862–876. [Google Scholar]
  12. K.B. Lauritsen, M. Sahimi and H. Herrman, Phys. Rev. E 48 (1993) 1272. [Google Scholar]
  13. P. Meakin, Phys. Rev. B 29 (1984) 4327. [Google Scholar]
  14. P. Meakin, M. Murat, A. Aharony, J. Feder and T. Jøssang, Diffusion-limited aggregates near the percolation threshold. Phys. A 155 (1989) 1–20. [CrossRef] [Google Scholar]
  15. M. Murat and A. Aharony, Phys. Rev. Lett. 57 (1986) 1875. [CrossRef] [PubMed] [Google Scholar]
  16. E. Pauné and J. Casademunt, Phys. Rev. Lett. 90 (2003) 144504. [CrossRef] [PubMed] [Google Scholar]
  17. P.G. Saffman and G.I. Taylor, Proc. R. Soc. Lond. A 245 (1958) 312. [Google Scholar]
  18. L.M. Sander, Contemp. Phys. 41 (2000) 203–218. [Google Scholar]
  19. J. Soriano, J. Ortín and A. Hernàndez-Machado, Phys. Rev. E 66 (2002) 031603. [Google Scholar]
  20. J. Soriano, J.J. Ramasco, M.A. Rodríguez, A. Hernàndez-Machado and J. Ortín, Anomalous Roughening of Hele-Shaw Flows with Quenched Disorder. Phys. Rev. Lett. 89 (2002) 026102. [CrossRef] [PubMed] [Google Scholar]
  21. R. Toussaint, G. Løvoll, Y. Méheust, K.J. Måløy and J. Schmittbuhl, Europhys. Lett. 71 (2005) 583–589. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.