Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 15, 2020
Ecology and evolution
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/mmnp/2019006 | |
Published online | 24 January 2020 |
- S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordrecht (2000). [Google Scholar]
- L.I. Aniţa and S. Aniţa, Note on some periodic optimal harvesting problems for age-structured population dynamics. Appl. Math. Comput. 276 (2016) 21–30. [Google Scholar]
- L.I. Aniţa, S. Aniţa and V. Arnǎutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term. Appl. Math. Comput. 215 (2009) 2701–2715. [Google Scholar]
- G.D. Blasio, M. Iannelli and E. Sinestrari, Approach to equilibrium in age structured populations with an increasing recruitment process. J. Math. Biol. 13 (1982) 371–382. [Google Scholar]
- B. Ebenman and L. Persson, Size-Structured Populations: Ecology and Evolution. Springer-Verlag, Berlin (1988). [CrossRef] [Google Scholar]
- J.Z. Farkas, Net reproduction functions for nonlinear structured population models. MMNP 13 (2018) 32. [EDP Sciences] [Google Scholar]
- J.Z. Farkas and T. Hagen, Linear stability and positivity results for a generalized size-structured daphnia model with inflow. Appl. Anal. 86 (2007) 1087–1103. [Google Scholar]
- J.Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model. J. Math. Anal. Appl. 328 (2007) 119–136. [Google Scholar]
- J.Z. Farkas and T. Hagen, Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete Continuous Dyn. Syst. Ser. B 9 (2008) 249–266. [Google Scholar]
- J.Z. Farkas and A.Y. Morozov, Modelling effects of rapid evolution on persistence and stability in structured predator-prey systems. MMNP 9 (2014) 26–46. [CrossRef] [EDP Sciences] [Google Scholar]
- K.R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model. Appl. Math. Optim. 54 (2006) 1–15. [Google Scholar]
- Z.R. He and Y. Liu, An optimal birth control problem for a dynamical population model with size-structure. Nonlinear Anal. Real World Appl. 13 (2012) 1369–1378. [Google Scholar]
- Z.R. He, M.S. Wang and Z.E. Ma, Optimal birth control problem for nonlinear age-structured population dynamics. Discrete Contin. Dyn. Syst. Ser. B 4 (2004) 589–594. [Google Scholar]
- N. Hritonenko, Y. Yatsenko, R.U. Goetz and A. Xabadia, Maximum principle for a size-structured model of forest and carbon sequestration management. Appl. Math. Lett. 21 (2008) 1090–1094. [Google Scholar]
- N. Hritonenko, Y. Yatsenko, R.U. Goetz and A. Xabadia, A bang-bang regime in optimal harvesting of size-structured populations. Nonlinear Anal. 71 (2009) e2331–e2336. [CrossRef] [Google Scholar]
- N. Kato, Maximum principle for optimal harvesting in linear size-structured population. Math. Popul. Stud. 15 (2008) 123–136. [Google Scholar]
- N. Kato, Optimal harvesting for nonlinear size-structured population dynamics. J. Math. Anal. Appl. 342 (2008) 1388–1398. [Google Scholar]
- Y. Liu and Z.R. He, Optimal harvesting of a size-structured predator-prey model. Acta Math. Sci. Ser. A Chin. Ed. 32 (2012) 90–102. [Google Scholar]
- R. Liu and G.R. Liu, Optimal birth control problems for a nonlinear vermin population model with size-structure. J. Math. Anal. Appl. 449 (2017) 265–291. [Google Scholar]
- R. Liu and G.R. Liu, Maximum principle for a nonlinear size-structured model of fish and fry management. Nonlinear Anal.-Model. 23 (2018) 533–552. [CrossRef] [Google Scholar]
- R. Liu, F.Q. Zhang and Y.M. Chen, Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete Contin. Dyn. Syst. Ser. B 21 (2016) 3603–3618. [CrossRef] [Google Scholar]
- Z.X. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model. Appl. Math. Comput. 186 (2007) 1742–1752. [Google Scholar]
- P. Magal and S. Ruan (Eds.), Structured-Population Models in Biology and Epidemiology. Springer, Berlin (2008). [CrossRef] [Google Scholar]
- A. Morozov, Prefacce modelling in ecology, epidemiology and evolution. Math. Model. Nat. Phenom. 13 (2018) E1. [Google Scholar]
- F.Q. Zhang, R. Liu and Y.M. Chen, Optimal harvesting in a periodic food chain model with size structures in predators. Appl. Math. Optim. 75 (2017) 229–251. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.