Open Access
Math. Model. Nat. Phenom.
Volume 15, 2020
Article Number 70
Number of page(s) 25
Published online 03 December 2020
  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables. Dover Publications, New York (1965). [Google Scholar]
  2. P. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some hamiltonians with rational potentials. Discr. Continu. Dyn. Syst. B 10 (2008) 265–293. [CrossRef] [Google Scholar]
  3. P. Acosta-Humánez, J.T. Lázaro, J.J. Morales-Ruiz and C. Pantazi, Differential Galois theory and non-integrability of planar polynomial vector fields. J. Differ. Equ. 264 (2018) 7183–7212. [CrossRef] [Google Scholar]
  4. P. Acosta-Humánez, J.J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation. Rep. Math. Phys. 67 (2011) 305–374. [CrossRef] [Google Scholar]
  5. D. Alonso, R.S. Etienne and A.J. McKane, The merits of neutral theory. Trends Ecol. Evol. 21 (2006) 451–457. [CrossRef] [PubMed] [Google Scholar]
  6. D. Alonso, A.J. McKane and M. Pascual, Stochastic amplification in epidemics. J. R. Soc. Interface 4 (2007) 575–582. [CrossRef] [PubMed] [Google Scholar]
  7. J.A. Capitán, S. Cuenda and D. Alonso, How similar can co-occurring species be in the presence of competition and ecological drift? J. R. Soc. Interface 12 (2015) 20150604. [CrossRef] [PubMed] [Google Scholar]
  8. J.A. Capitán, S. Cuenda and D. Alonso, Stochastic competitive exclusion leads to a cascade of species extinctions. J. Theor. Biol. 419 (2017) 137–151. [CrossRef] [PubMed] [Google Scholar]
  9. T. Crespo and Z. Hajto, Algebraic Groups and Differential Galois Theory. In Vol. 122 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2011). [CrossRef] [Google Scholar]
  10. W. Feller, Die grundlagen der volterrschen theorie des kampfes ums dasein in wahrscheinlichkeitstheoretischer behandlung. Acta Biometrica 5 (1939) 11–40. [Google Scholar]
  11. B. Haegeman, M. Loreau, A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol. 269 (2011) 150–165. [CrossRef] [PubMed] [Google Scholar]
  12. S.P. Hubbell, The Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001). [Google Scholar]
  13. I. Kaplansky, An introduction to differential algebra. Hermann, Paris (1957). [Google Scholar]
  14. S. Karlin and H.M. Taylor, A first course in stochastic processes. Academic Press, New York (1975). [Google Scholar]
  15. D.G. Kendall, On the generalized birth-and-death process. Ann. Math. Stat. 19 (1948) 1–15. [CrossRef] [Google Scholar]
  16. E. Kolchin, Differential Algebra and Algebraic Groups. Academic Press, New York (1973). [Google Scholar]
  17. J.J. Kovacic, An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1986) 3–43. [CrossRef] [Google Scholar]
  18. A.G. McKendrick and M. Kesava, The rate of multiplication of micro-organisms: A mathematical study. Proc. R. Soc. Edinburgh 31 (1912) 649–653. [CrossRef] [Google Scholar]
  19. J.J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems. In Vol. 179 of Progress in Mathematics series. Birkhäusser, Basel (1999). [Google Scholar]
  20. R.M. Nisbet and W.C.S. Gurney, Modelling fluctuating populations. The Blackburn Press, Caldwell, New Jersey (1982). [Google Scholar]
  21. A.S. Novozhilov, G.P. Karev and E.V. Koonin, Biological applications of the theory of birth-and-death processes. Brief. Bioinform. 7 (2006) 70–85. [CrossRef] [PubMed] [Google Scholar]
  22. A. Ronveaux, Heun’s differential equations. Oxford University Press, Oxford (1995). [Google Scholar]
  23. G.U. Yule, A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 213 (1924) 21–87. [Google Scholar]
  24. M. van der Put and M. Singer, Galois theory of linear differential equations. In Vol. 328 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, New York (2003). [CrossRef] [Google Scholar]
  25. T.L. Saati, Elements of queuing theory. McGraw-Hill, New York (1961). [Google Scholar]
  26. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Naz. Lincei 2 (1926) 31–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.